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Abstract

Panoramic camera-based Visual-Inertial-Odometry (VIO) systems play a crucial role in robotic navigation, autonomous
driving, and virtual reality applications, owing to their large Field-of-View and enhanced localization capabilities.
However, the nonlinear distortions caused by the lack of geometric consistency in projection models for panoramic
images pose significant challenges to feature extraction and tracking algorithms. In this paper, we present Geotri-VIO,
a novel VIO system that addresses these challenges using a multi-prism projection model. By constructing the multi-
prism projection planes such that each face is tangent to the inherent projection sphere of the panoramic camera,
the proposed model ensures strict geometric consistency in each projection plane while maintaining global geo-
metric consistency, which is supported by mathematical proof. Additionally, we evaluate the impact of increasing

the number of projection planes and demonstrate that triangular prism projection outperforms other multi-prism
projection models. To validate its effectiveness, Geotri-VIO is tested on public datasets. Experimental results show
that the triangular prism projection significantly improves the tracking accuracy of both point and line features,
thereby enhancing the overall localization performance of the VIO system.

Keywords Panoramic camera, VIO, Triangular prism projection, Geometric consistency

Introduction

With the rapid advancements in fields such as robotic
navigation, autonomous driving, Virtual Reality (VR) and
Augmented Reality (AR), the need for precise localization
and environmental perception is growing steadily (Hua
et al.,, 2023; Li et al,, 2021), particularly in Global Posi-
tioning System (GPS) denied environments (Cao et al.,
2022). Visual-Inertial-Odometry (VIO) systems, which
integrate visual and inertial data to deliver accurate pose
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estimation, have become a significant area of research
(Qin et al,, 2018). While most existing studies focus on
VIO systems utilizing pinhole camera models (Campos
et al.,2021; Yang et al,, 2023; Yan et al., 2024; El-Sheimy
& Li, 2021), panoramic cameras (Gao et al., 2022; Wang
et al., 2022) are gaining attention due to their large Field-
of-View (FoV) and ability to capture rich environmental
information (Wu et al., 2024; Li et al., 2024).

In VIO systems, geometric consistency plays a criti-
cal role. Geometric consistency refers to the require-
ment that the projection of image features and their
spatial relationship in the physical scene remain consist-
ent in pose estimation (Amato et al., 2011). For effec-
tive feature matching and optimization using visual and
inertial data, the geometric structure of these data must
align with the real-world spatial layout. However, many
existing panoramic VIO algorithms utilize models such
as equidistant cylindrical projection or omnidirectional
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projection, which abandon perspective projection to cap-
ture scene information. This approach compromises the
proportional representation of real-world scenes, causing
panoramic camera images to lose geometric consistency
with the physical environment. The lack of geometric
consistency causes nonlinear distortions, making it more
difficult to extract feature points and line segments from
panoramic images, reducing tracking accuracy, and ulti-
mately negatively impacting the overall performance of
VIO systems.

To address these challenges, this work proposes a novel
multi-prism projection model for panoramic cameras
and designs a panoramic VIO system, Geotri-VIO, that
integrates both point features and combined point-line
features to validate the performance of the proposed
model. Specifically, we construct the multi-prism projec-
tion planes in such a way that each face is tangent to the
inherent projection sphere of the panoramic camera. By
calculating the azimuth and elevation angles of the points
on the projection planes in the spherical coordinate sys-
tem, pixel values are assigned. Mathematical proof dem-
onstrates that in multi-prism projection, the geometric
relationship of pixels within each plane strictly adheres
to spatial consistency, preserving the relative positions
of feature points and thereby improving the accuracy of
feature extraction and tracking. Figure 1 shows the pro-
jection results of different models in the same scenario,
including equidistant cylindrical projection, panoramic
annular projection, the triangular prism projection from

a 3D point cloud map

d Triangular projection
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the multi-prism projection model, and Cubemap projec-
tion. By examining the highlighted region (red box), it
can be observed that equidistant cylindrical projection
and panoramic annular projection exhibit significant
distortions, causing the images to lose geometric con-
sistency. Additionally, some continuous geometric struc-
tures in the real world become discontinuous after being
mapped to the projection image through the Cube map
projection model, which poses a significant challenge
for feature-based VIO systems. In contrast, the triangu-
lar prism projection best preserves the linear structure
and angular relationships, making the projection model
most consistent with the geometric characteristics of the
Three-Dimensional (3D) point cloud map.

To determine the optimal number of prism faces, this
study systematically compares the projection charac-
teristics of triangular, quadrilateral, pentagonal, and
hexagonal prisms, extending the analysis to equidistant
cylindrical projection. With rigorous mathematical ver-
ification of angular deviations in projection plane inter-
faces, the results demonstrate that triangular prism
projection exhibits superior global geometric consist-
ency compared to other polygonal prism projections.
Theoretical analysis indicates that increasing the num-
ber of prism faces progressively approximates to equi-
distant cylindrical projection, leading to a reduction in
global spatial consistency. Finally, experimental valida-
tion confirms these theoretical findings.

e Cubemap projection
Fig. 1 Projection results of different models under the same scenario. a 3D point cloud map. b Equidistant cylindrical projection. ¢ Panoramic
annular projection. d Triangular projection. e Cubemap projection
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In this paper, the main contributions and innova-
tions are summarized as follows:

+ A panoramic VIO framework, Geotri-VIO, is
designed to enhance the utilization of visual informa-
tion in panoramic images, improving feature match-
ing and backend optimization accuracy, thereby
boosting the overall performance of the VIO system.

+ A novel multi-prism projection model is introduced,
adaptable to various VIO frontend features, address-
ing the issue of geometric inconsistency in pano-
ramic images. Theoretical analysis demonstrates the
model’s effectiveness in improving geometric consist-
ency, and it is further validated that optimal perfor-
mance is achieved by using a triangular prism projec-
tion.

+ To validate the effectiveness of the Geotri-VIO
framework, extensive experiments are conducted
using both point features and point-line combined
features. On public datasets, our algorithm demon-
strated excellent performance in both front-end fea-
ture tracking accuracy and pose estimation precision.

Omnidirectional projection model

Equidistant cylindrical projection model

Panoramic image
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Related work

This section reviews the panoramic camera projection
models, point based panoramic VIO systems, and point
and line based panoramic VIO systems. These methods
illustrate the ability to integrate diverse frontend features
within VIO systems, and offer various solutions to the
challenges posed by panoramic cameras.

Panoramic camera projection models

Panoramic cameras have gained a widespread atten-
tion in the field of VIO due to their ability to capture a
larger Field-of-View (FoV) and perceive a broader sur-
rounding environment. However, panoramic cameras
abandon perspective projection for capturing scene
information, resulting in the images that fail to repre-
sent real world scenes. In other words, the panoramic
camera images no longer maintain geometric consist-
ency with the real-world scene. Currently, the panoramic
camera projection models widely used in panoramic VIO
systems include the omnidirectional projection model
(Scaramuzza, Martinelli, and Siegwart, 2006), equidis-
tant cylindrical projection model (Yang, 2021) and Cube-
map projection model (Wang et al., 2018), as shown in
Fig. 2. The panoramic annular image, calibrated with a

Cubemap projection model

Cubemap image

Fig. 2 Three commonly used projection models and corresponding projection images in VIO. This figure illustrates three commonly used
projection models and their corresponding projection images in VIO. Omnidirectional projection model and panoramic annualr image. Equidistant
cylindrical projection model and panoramic image. Cubemap projection model and Cubemap image
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few parameters (Scaramuzza, Martinelli, and Siegwart,
2006), efficiently establishes pixel-to-scene correspond-
ence, making it widely adopted in panoramic VIO sys-
tems (Wang et al,, 2022; Wang et al., 2022; Wang et al.,
2024; Wang et al,, 2024). Nevertheless, this projection
model completely disrupts the perspective relationship
between the real-world scene and the pixel image, creat-
ing significant challenges for feature processing in VIO
front-end systems. The panoramic image, generated with
equidistant cylindrical projection (Yang, 2021), reduces
the distortion at the image center and has been utilized in
some Simultaneous Localization and Mapping (SLAM)
frameworks (Huang & Yeung, 2022; Wu et al., 2024).
This advantage, however, comes at the cost of increased
distortion in the image edges, which poses additional
difficulties for VIO front-end feature extraction and
matching. Cubemap projection, introduced in Wang
et al. (2018), models a large FoV camera as a combina-
tion of multiple pinhole cameras as shown in Fig. 2. The
resulting Cubemap consists of undistorted sub-regions
seamlessly stitched together, partially restoring the geo-
metric consistency between the real-world scene and the
image. While the approaches in Wang et al. (2018) and
Xu et al. (2022) demonstrate promising results with this
projection model, they lack a comprehensive analysis of
the distortion issues occurring in the boundaries between
sub-regions.

Point based panoramic VIO systems

Point based panoramic VIO methods utilize point fea-
tures for localization and map- ping. The extended per-
ceptual range provided by panoramic cameras (Jiang
et al., 2022, 2024; Yang et al., 2019) facilitates the extrac-
tion of a broader set of features, thereby improving the
robustness of panoramic VIO systems. As a result,
numerous visual odometry, VIO, and SLAM frame-
works have been developed specifically for panoramic
cameras. For instance, OpenVSLAM (Sumikura et al,
2019), a general-purpose SLAM framework, employs
sparse ORB features (Rublee et al., 2011) in its front-end
processing and supports panoramic camera. Cubemap-
SLAM (Y. Wang et al., 2018) redesigns the ORB-SLAM
(Mur-Artal et al., 2015) framework for piecewise-pinhole
monocular fisheye cameras, optimizing feature extrac-
tion across sub-regions. PAL-SLAM (Wang et al.,, 2022)
and 3600RB-SLAM (Chen et al., 2024) employ ORB
(Mur-Artal, Montiel, and Tardos, 2015) feature points for
360° camera SLAM systems. Based on PAL-SLAM(Wang
et al., 2022), the recent PAL-SLAM2 (Wang et al., 2024)
improves feature tracking in the negative hemisphere of
360° cameras, addressing the limitations of traditional
frameworks and effectively handling rapid turns, low-
light conditions, and sudden lighting changes. Similarly,
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LE-VIO (Wang et al, 2022), developed based on the
VINS-MONO (Qin et al., 2018) framework, presents
a VIO system specifically designed for 360° cameras,
addressing the challenges of feature point tracking and
processing in the negative hemisphere. More recently,
LF-VISLAM (Wang et al., 2024) is proposed as an exten-
sion of LF-VIO (Wang et al, 2022), incorporating a
loop closure module for 360° cameras based SLAM sys-
tem, which further enhances the system’s accuracy and
robustness. Despite their utility, these approaches rely on
traditional feature detection, description, and matching
pipelines. The inherent lack of geometric consistency in
panoramic images results in significant changes in feature
descriptors under varying viewpoints, reducing matching
performance. Methods based on optical flow also suffer
from similar geometric consistency issues, limiting their
effectiveness.

Point and line based panoramic VIO systems

Point and line based VIO methods enhance system per-
formance by integrating line features into the front-end
and utilizing line constraints in back-end optimization.
As a result, the performance of line feature detection
and tracking is critical to the overall efficiency of these
systems. Early point and line based VIO systems, such
as PL-VIO (He, Zhao, Guo, He, and Yuan, 2018) and
PL-VINS (Fu et al, 2020), typically employed tradi-
tional line detection algorithms like LSD (Von Gioi et al.,
2012) and ELSED (Sudrez, Buenaposada, and Baumela,
2022), which rely on local contour-based approaches.
The detected line features are commonly described and
matched using the Line-Band-Discriptor (LBD) descrip-
tor (Zhang & Koch, 2013) in early point and line based
VIO system. In recent years, learning-based methods
for line feature detection, such as SOLD2 (Pautrat et al.,
2021) and DeepLSD (Pautrat et al., 2023), were proposed,
leveraging deep neural networks to improve detection
accuracy and robustness. Recently, AirSLAM (Xu et al,,
2024) proposed PLNet, a learning-based network capable
of real-time line detection and matching. However, these
methods rely on input images with geometric consist-
ency and are thus not directly applicable to panoramic
VIO systems. Unified Line Segment Detection (ULSD)
(Li et al., 2021), another learning-based line detection
method, is specifically designed for detecting line seg-
ments in both distorted and undistorted images, making
it particularly well-suited for panoramic cameras. How-
ever, ULSD focuses solely on line detection and lacks the
functionality for matching and tracking detected lines.
While learning-based methods offer higher flexibility in
feature extraction and can perform better in extremely
complex scenarios, they often rely on Graphics Pro-
cessing Unit (GPU) acceleration and incur significant
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computational overhead, making it challenging to ensure
real-time performance. More recently, LE-PGVIO (Wang
et al, 2024) recombined the LBD descriptor and then
proposed the RLBD descriptor, which is used for describ-
ing and matching line segments in panoramic images.
Although this approach addresses some challenges,
the lack of geometric consistency in panoramic images
often leads to RLBD descriptor instability under varying
viewpoints.

In summary, most panoramic VIO algorithms, whether
point based or point and line based, rely on the geometric
consistency of the input images in the front-end feature
processing (as summarized in Table 1). However, these
algorithms do not fully account for this issue. Motivated
by this, we propose a novel panoramic VIO framework,
where the front-end introduces a multi-prism projection
model to achieve geometric consistency.

Table 1 The Importance of Geometric Consistency in Different
Feature Processing Algorithms

Algorithm type Requires
geometric
consistency

Harris Yes

ORB Yes

LK Yes

BRIEF Yes

LSD Yes

ELSED Yes

LBD Yes
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Methodology

This section details the proposed multi-prism projec-
tion algorithm and proves its geometric consistency.
Additionally, the proposed VIO framework is intro-
duced, which is adaptable to both point features and
combined point-line features. The framework is illus-
trated in Fig. 3. The overall framework consists of three
main components: projection, point based VIO, and
point and line based VIO. The projection component
is discussed in Section Geometric consistency and Sec-
tion Multi-prism projection, which detail the projec-
tion model and prove its geometric consistency. The
point based VIO component is in Section Point based
VIO, describing the process from front-end feature
extraction to back-end residual construction and opti-
mization. Finally, the point and line based VIO compo-
nent in Section Point and line based VIO extends the
framework by integrating line features, detailing the
process from feature extraction to residual construc-
tion and optimization for enhanced robustness.

Geometric consistency

Geometric consistency can be assessed by examining
whether the partial derivatives of the image coordinates
with respect to the spatial coordinates exhibit linear
behavior under constant depth conditions. The math-
ematical proof is as follows.

For panoramic images with equidistant cylindrical
projection, the projection relationship between pixel
coordinates (#, v) and 3D spatial coordinates (X, Y, Z)
is as:
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Fig. 3 The framework of Geotri-VIO compatible with both point features and combined point-line features. Projection, point based VIO, and point
and line based VIO are the main modules of Geotri-VIO, represented by light green, gray, and blue boxes, respectively
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where kg4 and kp are scaling factors that denote the num-
ber of pixels per radian in the latitude and longitude
directions, respectively. For u = kg arctan (%), the partial
derivatives with respect to X and Y are derived as follows:
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These derivatives vary significantly depending on the
position in the image, particularly near the poles or far
from the center, where the nonlinearity becomes pro-
nounced. This positional dependence disrupts the uni-
formity of 3D spatial relationships between pixels,
leading to geometric inconsistency. Consequently, such
distortions affect the reliability of feature extraction,
matching, and motion estimation in VIO systems.

Multi-prism projection

The proposed multi-prism projection model better pre-
serves geometric consistency across different regions of the
panoramic image. Taking the triangular prism projection
as an example, pixel values from the panoramic image are
mapped to the projection image by calculating their azi-
muth and elevation angles in the projection sphere’s coor-
dinate system. As illustrated in Fig. 4, the detailed proof of
this process is provided below.

For a spatial point P(X, Y, Z), it is first mapped to the
image center coordinate system O of the projection plane,
with O representing the center of the image, using the fol-
lowing formula:

Fig. 4 lllustration of triangular prism projection for panoramic cameras. This figure illustrates the triangular prism projection for panoramic cameras.
The top-left inset shows a 3D schematic of the projection sphere inscribed within a triangular prism. The main diagram highlights the 3D to 2D

projection process
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where Wand H represent the horizontal and vertical res-
olutions of the projection plane, and «, and «; denote the
horizontal and vertical viewing angles, respectively. R is
the projection radius. Then convert y and z to the point
p(u,v) in the coordinate system O:

LA .4 (10)
u = _——= - — _—
YT X2

+H R Z+H (11)
VvV = _——= . — _

) X2

Finally, the azimuth angle ¢ and elevation angle 0 of the
point P(X,Y,Z) in the projection spherical coordinate
system are computed, and the pixel values are assigned to
p(u,v)accordingly:

¢ = arctan <%) (12)

(13)

6 = arctan _z
/y2 + RZ

Once the panoramic camera parameters are fixed, the
mapping relationship for the projection can be computed
and stored. During runtime, the projection process sim-
ply looks up the computed mapping table, which has a
time complexity of O(1) per pixel. This efficient imple-
mentation ensures that the computational overhead of
the projection process is negligible compared to other
components of the system.

The rate of change of the new projection plane can
be computed by calculating the partial derivatives of
the pixel coordinates with respect to the spatial coor-
dinates. Since the projection plane’s depth direction is
aligned with the X-axis, the partial derivatives of u with
respect to Y and Z are calculated as follows:

o K "
Y X

ou =0 15)
9z (

Similarly, for v:
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The rates of change, represented by g—}‘ﬁ, g—;, g—;’, and %, fol-

low linear transformations. Consequently, the triangular
prism projection achieves local geometric consistency
within each projection plane.

Although this work has demonstrated that each pro-
jection plane in the multi-prism projection exhibits local
geometric consistency, such consistency does not hold
in the boundaries between adjacent projection planes.
Notably, the degree of global geometric consistency var-
ies with the number of prism faces. To determine the
optimal number of prism faces, this paper conducts a
rigorous mathematical derivation to quantify the global
geometric consistency of the multi-prism projection.

As shown in Fig. 5, a spatial line L is projected onto the
projection plane I1(1) as /(1) and onto I1(2) as /(2). Subse-
quently, IT(1) and I1(2) are stitched together to form the
two-dimensional image planes IT'(1) and I1'(2) , which
simulates the imaging process of multi-prism projection.
For clarity, we denote the Two-Dimensional (2D) image
planes as IT'(i) and the 2D lines on these planes as /(7).
It can be observed that when the projection /(1) of the
space line L crosses the intersection line /(3) between
[1(1) and I1(2), it undergoes a deflection. As a result, an
angle 0 is formed between /(1) and //(2) in the image
plane, reflecting the geometric inconsistency between the
projection planes.

To compute 6, we first calculate the cross product of
the normal vectors of IT(1) and IT(3), as well as IT(2) and
I1(3), to obtain the direction vectors of the intersection
lines /(1) and /(2), where I1(3) is the plane formed by the
spatial line L and the camera center O. This paper uses
nr() to represent the normal vector of a plane I1(i) and
Vi) to denote the direction vector of a line /(i):

{ Vi) = (nE) X #naw) (18)
Vi) = (M) X )

Where (T) denotes the normalization operation of a vec-
tor. Since /(1) and /(2) are 3D projection lines, the angle
between them cannot be directly used to represent the
angle 6 between /(1) and //(2) in the 2D image plane.
Therefore, we compute the angles between /(1) and (3),
as well as /(2) and /(3), to indirectly determine 6:
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Fig. 5 Geometric consistency analysis of multi-prism projection. The left figure illustrates the process of projecting a spatial line onto multiple
projection planes, while the right figure shows the deflection of the line in the 2D image plane

_ Vi) Via)
01 = arccos ———2—
1 i Vi) |
9 = arccos M 1
2 i Vi (19)

0 =(n—01)—06

where /(3) can be obtained by computing the cross prod-
uct of the normal vectors of IT(1) and I1(2) :

Vi) = (mnq) X 1) (20)

Noting that the intrinsic geometric inconsistency
between adjacent projection planes depends only on
their relative angles and is independent of external fac-
tors. We assume without loss of generality that L is paral-
lel to both the plane ITxoy and the plane I1(1) to simplify
the mathematical proof. In this case, nr(3) and v; satisfy
the constraint:

vy -unxoy =0
{ v omnay =0 (21)
moreover, 0; satisfies:
9 — T
1= (22)

Similarly, assuming that the number of faces in the multi-

prism projection is k and the angle between I1(3) and

Ixoy is o, then I1(1), IT1(2) and I1(3) satisfy the constraint:
n11(1) A1 (2)

{ arccos [l -l

n ‘MI1,X0Y

arccos

27T +
=n—LkeZ
_ o F = (23

) ll-llzoxoyll —

where, 27“ represents the angle between the planes

I1(1) and I1(2), and n,xoy is aligned with the Z-axis. o
denotes the angle between the planes I1(3) and nm xoy.
In this proof, we restrict our analysis to the case where
a € [0, /2) due to the symmetry of the projection planes
with respect to ITxoy.

By solving the system of equations Eqgs. (18)—(23), ¢
can be expressed as a function of k and a:

2T
0(k,a) = arcsin [sm(7) sin(a)] (24)
Since there are k — 1 intersection lines between pro-
jection planes when the number of projection planes is
k, this work constructs the function I to represent the
global geometric inconsistency of the multi-prism pro-
jection for different values of k:
e 2T
I(k,a) = arcsin [sm(7) sin(a)] - (k — 1) (25)
where, for a fixed o, I(k,«) is monotonically increasing
for k € Zig, which implies that I attains its minimum
value when k = 3. This indicates that the global geomet-
ric consistency of the triangular prism projection model
is the highest.

Figure 6 illustrates the theoretical derivation
described above. As the number of projection planes
increases, the size of each individual plane decreases,
the boundary regions expand, and global geometric
consistency deteriorates. In the limiting case, where
the multi-prism projection approaches the equidistant
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Triangular prism projection

Pentagonal prism projection

cylindrical projection, geometric consistency is entirely
lost. In the subsequent sections, the triangular prism
projection is employed as a representative example of
multi-prism projections and is utilized for the extrac-
tion and matching of both point and line features.

The relationship between the number of projection
planes and geometric consistency will be experimentally
validated in Section Experiments.

Point based VIO

As mentioned in Section Multi-prism projection, after
completing the multi-prism projection, the front-end
image achieves geometric consistency. This means that the
feature detection and tracking methods commonly used
in traditional VIO systems with pinhole cameras can be
directly applied to this framework.

To establish the correspondences between different
image frames, we first extract Shi-Tomasi corners (Shi
et al., 1994) and then track them using the Lucas-Kanade
method (Lucas & Kanade, 1981). Next, we apply a two-step
geometric outlier rejection process with Random Sample
Consensus (RANSAC), as described in Qin et al. (2018),
to enhance robustness. For the back-end optimization, to
accommodate the large FoV panoramic cameras, we use
a similar panoramic VIO work (Z. Wang et al., 2022) to
construct the optimization objective function. In the point
based VIO system, the state vector variables are shown as:
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Quadrilateral prism projection

Hexagonal prism projection

Equidistant cylindrical projection
Fig. 6 Projection images of models with varying numbers of projection planes. This figure illustrates how the triangular prism projection image
progressively converges to the equidistant cylindrical projection image as the number of projection planes increases

(BB

X = |&X1...,4N, C'O,...,tC'N,/h,...,/lK}

w0 = PO Ve i ba by n e 0N (26)
(B _ [p® (B)]

[ i ’qc,i

Here, &, represents the state of the body in the n-th slid-

ing window. It consists of the position P;‘Z), velocity

VE;‘Z), orientation quaternion qu), and the accelerometer

and gyroscope biases, denoted as b, and by, respectively.
The variable tg? represents the transformation from the
camera coordinate system ¢; to the body coordinate sys-

tem. This transformation includes the position Pg) and

the orientation quaternion qg). The variable Ax denotes
the inverse distance of the k-th feature point relative to
its first observation on the unit sphere. N refers to the
total number of sliding windows used in the algorithm,
while K represents the number of feature points.

By utilizing the state variables defined in Eq. (26), the
overall optimization objective for the point based VIO
system is formulated as:

2
o { = x4 3 (a0 |
keB

o2 27)
+ > p,,Hrc(éﬁf"),x)H }

()=
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where x is the optimization variable. r,, , g and rc rep-
resent the residuals for marginalization, IMU pre-inte-
gration and point features, respectively. B is the set of
all pre-integrated IMU measurements within the sliding
window, while C denotes the sets of point measurements
from the observed frames. We use the Ceres Solver to
solve the nonlinear maximum of the a posteriori estima-
tion problem and employ a Huber loss function (Huber,
1992) to mitigate the influence of outliers, thereby
enhancing the system’s robustness.

Point feature residual: The input to the front-end is
the multi-prism projection image, which achieves geo-
metric consistency and enhances the accuracy of feature
detection and tracking. In the back-end optimization, to
support the large FoV of the panoramic camera, the point
features are projected onto the unit spherical surface
using the following projection function:

o = cos(f) - cos(¢)

B = cos(0) - sin(¢)
y =sin(0)

(28)

where, «, § and y represent the coordinates of the feature
points on the unit spherical surface, 6 and ¢ represent
the elevation angle and azimuth angle of the point on the
unit sphere, respectively. As mentioned in Section Multi-
prism projection, 6 and ¢ can be derived from the feature
point coordinates (u, v) in the triangular prism projection
image using Eqs. (7)-(13). Then denote the transforma-
tion from (u, v) to (o, B, y) as ;L.

The point feature reprojection error is computed
according to the following equation:

A 2 (¢)) ‘p(c’/)
C, T
re (zjf”,x) = (b1,by)" - <7’1 - H,Pfc,/) >
1

N) cion e\ T
Po=at (57 57)

c
. . i oo\ T
,P;cd) _ RZC){RS"’) {REZ)}) {Rgb) . i ,ﬂgl . <ﬁl(c,l)’l—/l(c,1)) +P§b)}

@) _ p | _ pb)
+P(h,i) P(b,j)} Pc}

(29)
where (ft}c’i), 12/1(”)) is the first observation of the [-th fea-
ture that happens in the i-th image. (ft;c'i) ,ﬁl(c’i)) is the

observation of the same feature in the j-th image. b; and

by are two arbitrarily selected orthogonal bases which
2 (cf)
span the tangent plane of P,

Point and line based VIO

Since the input triangular prism projection image is
geometrically consistent, the line feature detection and
tracking methods commonly used in traditional pinhole
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camera SLAM systems, such as He et al. (2018) and Fu
et al. (2020), can be directly applied. In this work, line
features are detected using ELSED and tracked with LBD
descriptors. Additionally, 3D lines are represented and
computed using Pliicker coordinates (G. Zhang, Lee,
Lim, and Suh, 2015).

Before introducing the back-end optimization, the
Pliicker coordinate system is brief overviewed, which
provides an intuitive and elegant representation of 3D
lines. In this coordinate system, a line is expressed as
L(n,d) € R®, where n and d denote the normal and
direction vectors, respectively. This representation sim-
plifies the numerical computation processes of 3D line
triangulation and reprojection.

However, during the back-end optimization in VIO, the
Pliicker coordinate introduces a hyperparameter issue,
as it represents a 3D line with 6 Degrees of Freedom
(DOF), but only 4-DOF are required. To address this, an
orthonormal representation with only 4-DOF is adopted
to represent 3D lines in the optimization process. This
approach has demonstrated a good convergence in previ-
ous works (Fu et al., 2020; G. Zhang, Lee, Lim, and Suh,
2015).

The orthonormal representation can be expressed as
follows:

o=[¥,9]

where ¥ is a rotation matrix representing the rotation of
the line relative to the camera coordinate system, and ¢
is a scalar representing the minimal distance from the
center of the panoramic camera to the line.

In the point and line based VIO system, the state vector
is defined as:

(30)

X = xl,...,xN,tE%),...,tgi\,),il,...,)«,ol,...,o]}
w0 = PO VD al) babe|n € [0,N]

(5 [0, 1]

o =[¥plicion

(31)
Compared to Eq. (26), the above equation’s x includes an
additional term, o; , which represents the orthonormal
representation of the j-th 3D straight line.
Using Eq. (31), a new optimization objective function is
constructed:

2
min {1, ~ Hpx P+ 3 o (20|
keB

. 2 . 2
+ X afre(ma)[ + X afn (@)}
(ij)eC (i

ij)el
(32)
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P, ry

Fig. 7 lllustration of point and line feature residuals in spherical and prism projections. The red 3D point and the red endpoints of the 3D line
are projected onto the unit spherical surface in different image frames. The orange point and endpoints are the reprojections from other frames.
P represents an observed 3D point, while Ps and Pe represent the observed line segment endpoints. p, ps, and pe denote features projected

onto the unit sphere. p/, p!, and p,, are the mappings of these features on the triangular prism projection image

where x is the optimization variable, r, , 7 and rc are the
same as in Eq. (27). ry represents the residuals for line
features, where L denotes the set of line measurements.

Line feature residual: As shown in Fig. 7, line feature
detection and tracking are performed on the geometri-
cally consistent triangular prism projection image. How-
ever, when constructing the line feature residual, the line
features distributed in the 360° space need to be projected
onto the unit spherical surface. Since a line is defined by
two points, this work project both the start and end points
using the projection function from Eq. (28), thereby map-
ping the entire line from the triangular prism projection
image onto the unit sphere.

The re-projection error of the line measurement model is
defined as follows:

d Sy !
= [dge’zl;] (33)
where
y el
A(p') = (34)

Ps = o, Bss Vs)
Pe = [0te, Bes Vel

ry represents the residual for the line feature, and d
denotes the distance between the endpoints of the
observed line segment on the unit spherical surface and
its reprojected line segment. The vector #' is the normal
vector to the plane that contains the reprojected line seg-
ment. The endpoints of the observed line segment on the
unit spherical surface are denoted by p; and pe.

Experiments

This section evaluates the effectiveness of the proposed
Geotri-VIO framework through a series of experiments,
with its performance compared to several state-of-the-art
algorithms. They include the benchmark LF-VIO algo-
rithm and the LF-PGVIO algorithm (Z. Wang, Yang, Shi,
Zhang, et al.,, 2024), which are designed for panoramic
cameras, as well as the traditional pinhole camera-based
VIO algorithms VINS-Mono and PL-VINS. Two datasets
are employed for this purpose: a custom dataset collected
using the experimental setup shown in Fig. 8 and the
publicly available PALVIO dataset. The localization accu-
racy of Geotri-VIO is compared with these algorithms to
validate its advantages.
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Insta 360 camera

Mid-360 Lidar and IMU

Orin NX

Fig. 8 Hardware setup and outdoor environment for real world data. Our car experiment platform with a Insta 360 panoramic camera,

a Livox-Mid-360 LIDAR, an IMU sensor and an onboard computer

Experiments setup and datesets

PALVIO Dataset: The PALVIO dataset is collected using
two panoramic annular cameras paired with a CUAV-v5
nano IMU sensor and a RealSense D435 sensor, synchro-
nized with ground-truth location and pose data captured
by a motion capture system (Vicon T40s). The panoramic
cameras capture monocular images with a resolution of
1280 x 960 at a rate of 30 Hz and a FoV spanning 360°
horizontally and 40° to 120° vertically. The IMU sen-
sor provides angular velocity and acceleration data at
200 Hz, while the motion capture system delivers posi-
tion and attitude data at 100 Hz, serving as the ground
truth. All data are recorded using the Robot Operat-
ing System (ROS) and provided in raw format without
additional processing. The dataset includes ten indoor
sequences (ID01-ID10) and two outdoor sequences
(ODO01 and ODO02). The indoor sequences are collected
within an 8 m x 10 m indoor environment. Among these,
sequences ID01, ID04, ID07, ID08, and ID09 feature
complex motion trajectories, including rapid rotations
and abrupt changes in direction, while sequences 1D02,
ID03, ID05, ID06, and ID10 exhibit relatively smooth
trajectories. The outdoor sequences are recorded using
a small vehicle equipped with a Livox Mid-360 Light
Detection and Ranging (LiDAR) sensor, which is used
with the Fast-LIO2 algorithm (W. Xu, Cai, He, Lin, and
Zhang, 2022) to obtain the ground truth. OD01 covers a
large open area, while ODO02 includes uneven terrain.
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Real world: To further validate the robustness and
adaptability of the proposed Geotri-VIO framework in
real world scenarios, real world data is collected using
a two-wheeled self-balancing robot equipped with an
NVIDIA Jetson Orin NX featuring a 6-core Advanced
RISC (Reduced Instruction Set Computing) Machine
(ARM) Central Processing Unit (CPU) for real-time
processing. The robot is outfitted with an Insta360 X4
camera, providing 360-degree imagery at a resolution
of 2448 x 1440 pixels and a frame rate of 30 Frames per
Second (FPS), a Livox Mid-360 LiDAR generating point
clouds at 10 Hz, and an IMU sensor delivering angular
velocity and acceleration data at 200 Hz. The LiDAR data
is utilized by the Fast-LIO2 algorithm to establish high-
precision ground truth. The real-world data includes two
distinct sequences: the first sequence, 3601, is recorded in
a large-scale indoor area of 60 m x 40 m, characterized
by structured environments and significant lighting vari-
ations, simulating a typical indoor navigation scenario.
The second sequence, 3600, is collected in an outdoor
campus area of 100m x 120 m, featuring unstructured
environments and dynamic obstacles such as pedestri-
ans and vehicles, making it a challenging environment
for VIO systems. These sequences are designed to com-
prehensively evaluate the robustness of the proposed
method in handling diverse environmental conditions,
including structured and unstructured scenes, dynamic
obstacles, and varying lighting conditions.
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Feature point extraction and tracking evaluation

In the point based VIO system, the quality of feature
point tracking directly determines the system’s perfor-
mance. The core of feature point tracking lies in find-
ing matching points between consecutive frames, which
serves as the foundation for subsequent pose estimation.
To evaluate the tracking performance of the proposed
triangular prism projection model on point features, the
same image is mapped to both the prism model and the
omnidirectional model, using Harris corner (Harris et al.,
1988) detection to extract feature points. Optical flow
algorithms are then applied to track these feature points.
However, tracking with optical flow may be affected by
dynamic objects, lighting changes, geometric consist-
ency of the projection model, and other factors, leading
to mismatches. Therefore, to enhance the reliability of
feature points, the RANSAC algorithm is incorporated to
eliminate erroneous matches. Several metrics are used to
assess the model’s effectiveness in utilizing point features,
as follows.

Optical Flow Success Rate (OFSR) measures the
accuracy and reliability of feature points tracked using
optical flow alone. A higher OFSR indicates that a larger
proportion of the feature points tracked through optical
flow have been effectively validated. The value of OFSR is
defined as:

Ng
VOESR = —,

35
Ny (35)

where Nr represents the number of feature points suc-
cessfully tracked with the optical flow alone, and Ny
represents the total number of feature points extracted
from the previous frame. This metric is used to evaluate
the impact of the projection model on the performance
of pure optical flow algorithms. By enhancing geomet-
ric consistency, the projection model helps the optical
flow algorithm better handle challenges such as dynamic
objects and lighting variations, thereby improving the
robustness of feature tracking.

Tracked Feature Ratio (TFR) reflects the overall
tracking capability of feature points. By discarding mis-
matched feature points, an increase in TFR indicates
improved tracking accuracy and stability. The value of
TER is calculated as follows:

VIR = , (36)

Nyt
where Npr represents the number of feature points suc-
cessfully tracked with optical flow and RANSAC algo-
rithms, and N,y represents the total number of feature
points extracted from the previous frame. This metric
directly evaluates the projection model’s impact on the
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final tracking precision, which is critical for the perfor-
mance of VIO systems. A higher TER indicates that the
projection model not only enhances feature point track-
ing but also improves the overall accuracy and stability of
the system, ultimately benefiting VIO localization preci-
sion in both static and dynamic environments.

Figure 9 and Table 2 present a comparative analysis
of the feature tracking performance between the trian-
gular prism projection model and the omnidirectional
projection used in LF-VIO algorithm. In Fig. 9, the fea-
ture tracking results with different projection models
are clearly illustrated: red points represent features that
remain trackable after both the optical flow and RANSAC
algorithms, green points indicate features tracked by the
optical flow but eliminated by RANSAC, and blue points
signify the features, whose optical flow tracking failed.
The results show that the triangular prism projection
model achieves a higher proportion of red points, dem-
onstrating its improved feature tracking stability. At the
same time, the reduced number of green and blue points
indicates that the model better maintains geometric
consistency in large FoV conditions, thereby minimiz-
ing feature tracking failures caused by geometric distor-
tion. This improvement highlights the advantages of the
triangular prism projection model in supporting feature
detection and matching in panoramic VIO systems.

Table 2 presents a comparison of the TFR and OFSR
metrics for all sequences between the triangular prism
projection model and the omnidirectional projection
used in LF-VIO. Bold values indicate the best results in
each comparison, and this convention applies to all sub-
sequent tables. The results demonstrate that the triangu-
lar prism projection model consistently outperforms the
omnidirectional projection in all indoor and outdoor test
sequences. The average TER for the triangular prism pro-
jection model increased from 0.883 (LF-VIO) to 0.929,
indicating a significant improvement in feature tracking
stability due to its enhanced geometric consistency. In
contrast, OFSR, which measures feature tracking accu-
racy based solely on the optical flow, shows minimal dif-
ferences between the two models (average values of 0.988
and 0.984, respectively). This is because the optical flow
algorithm inherently tolerates a certain level of tracking
error, and the accuracy of tracked features can vary. The
RANSAC algorithm subsequently eliminates the features
with lower tracking precision. Therefore, in terms of both
TER and OFSR metrics, the triangular prism projection
model stands out by significantly improving the quality
and utilization of feature tracking through enhanced geo-
metric consistency.

In the real-world data, Geotri-VIO further demon-
strates its robustness. The 360l sequence (indoor) fea-
tures structured environments and significant lighting
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b Trihedron image points tracking

Fig. 9 Feature point extraction and tracking results under different projection models. This figure illustrates feature point extraction and tracking
results under a anoramic annular image and b triangular prism projection image. Red points represent those that remain trackable after optical
flow and RANSAC algorithms, green points indicate those that are tracked by the optical flow method but eliminated by RANSAC, and blue points

denote those where optical flow tracking failed

variations, while the 3600 sequence (outdoor) includes
unstructured environments and dynamic obstacles such
as pedestrians and vehicles. In these conditions, Geotri-
VIO achieves TER values of 0.955 and 0.947, and OFSR
values of 0.995 and 0.992, significantly outperform-
ing the comparative method LF-VIO (TFR: 0.843 and
0.828; OFSR: 0.987 and 0.981). These results indicate that
Geotri-VIO effectively addresses the challenges posed by
structured and unstructured scenes, dynamic obstacles,
and varying lighting conditions.

To validate the superiority of the triangular prism
projection compared to other multi-prism projections,
the TFR and OFSR metrics of the multi-prism projec-
tion model are analyzed for different numbers of projec-
tion planes, as shown in Table 3. The triangular prism
projection with three planes achieves the highest scores
for both metrics. As the number of projection planes
increases, both TFR and OFSR show a declining trend.
In the ID01 sequence, the TFR decreases from 0 .854 for
the three- plane projection to 0.783 for the equidistant

cylindrical projection, while the OFSR drops from 0.975
to 0.964. This result is consistent with the theoretical
findings derived from Eq. (25), which demonstrates that
as the number of projection planes increases, geomet-
ric consistency deteriorates, leading to reduced tracking
stability.

Feature point based VIO evaluation

To evaluate the performance of Geotri-VIO using point
features, three metrics are used to compare Geotri-
VIO with LF-VIO: Relative Pose Error in translation
(RPEt), Relative Pose Error in rotation (RPEr), and Abso-
lute Trajectory Error (ATE). RPEt measures the error
between the estimated translation and the true values
between consecutive poses, reflecting the accuracy of
local displacement estimation. RPEr quantifies the rota-
tional error between consecutive poses, assessing the
system’s accuracy in estimating changes in orientation.
ATE evaluates global consistency by comparing the esti-
mated trajectory with the true trajectory, serving as a key
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Table 2 TFR and OFSR Comparison Between the proposed and

LF-VIO
Items Different results of TFR Different results of
OFSR
Ours LF-VIO Ours LF-VIO

1D01 0.854 0.766 0.975 0.963
ID02 0.961 0.921 0.994 0.992
ID03 0.968 0.942 0.995 0.993
IDo4 0.942 0913 0.991 0.988
ID05 0.931 0.889 0.987 0.985
ID06 0.920 0.884 0.985 0.983
ID07 0.886 0.848 0.979 0974
D08 0.926 0.892 0.987 0.984
ID09 0.924 0.889 0.987 0.983
D10 0.809 0.771 0.966 0.951
ODO1 0.990 0.987 0.998 0.998
0D02 0.989 0.987 0.998 0.996
360! 0.955 0.843 0.995 0.987
3600 0.947 0.828 0.992 0.981
Mean 0.929 0.883 0.988 0.984

performance metric for mapping and long-term naviga-
tion tasks. These metrics assess the accuracy of the VIO
system from different perspectives and are crucial in
practical applications. Additionally, the accuracy of the
VIO system is assessed on the ID01 and ODO1 sequences
for different projection planes.

Table 4 presents the experimental comparison of RPEt,
RPEr, and ATE between Geotri-VIO and LF-VIO for
all test sequences, with the corresponding trajectories
shown in Fig. 10. The trajectories of Geotri-VIO (green)
are overall closer to the Ground Truth (red) compared to
LE-VIO (blue), particularly in complex trajectory regions
such as ID01 and ID04, where Geotri-VIO effectively
reduces drift errors. In most test sequences, Geotri-VIO
outperforms LF-VIO in terms of RPEt, RPEr, and ATE.
On average, Geotri-VIO achieves a 25% reduction in
RPEt, a 10% reduction in RPEr, and a 39% reduction in
ATE, demonstrating its significant improvement in global
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trajectory reconstruction accuracy. These enhancements
are attributed to the introduction of the triangular prism
projection model, which substantially improves the per-
formance of point feature-based VIO systems.

To further validate the performance of Geotri-VIO in
more challenging environments, we analyze the results
of the 3601 and 3600 sequences. As shown in Table 4,
Geotri-VIO achieves an RPEt reduction to 6.800, an
RPEr reduction to 0.295, and an ATE reduction to
0.317 in the 3601 sequence, while in the 3600 sequence,
it achieves an RPEt reduction to 12.001, an RPEr reduc-
tion to 0.420, and an ATE reduction to 1.126, signifi-
cantly outperforming LF-VIO. These results further
confirm the robustness of Geotri-VIO in handling
complex scenarios, as previously demonstrated by its
superior performance in TFR and OFSR metrics. The
consistent improvements in multiple evaluation met-
rics highlight the effectiveness of the proposed triangu-
lar prism projection model in dynamic and challenging
environments.

Additionally, to validate that the triangular prism pro-
jection model outperforms other multi-prism projec-
tion models in point based panoramic VIO performance,
a comparative analysis is conducted using the indoor
IDO01 sequence and outdoor ODO01 sequence for differ-
ent projection planes. The results are shown in Table 3,
with corresponding trajectories presented in Fig. 11. As
the number of projection planes increases, the global
geometric consistency of the projection model gradually
deteriorates, leading to an upward trend in RPEt, RPEr,
and ATE. These findings confirm that the triangular
prism projection model achieves superior performance
by preserving geometric consistency and maintaining
higher accuracy in trajectory estimation compared to the
models with more projection planes.

Finally, to validate the advantages of the proposed
Geotri-VIO framework over traditional VIO algorithms
designed for pinhole cameras, a comparison is conducted
with VINS-Mono, a widely-used and classical VIO algo-
rithm. VINS-Mono is selected for comparison due to its

Table 3 Comparison of Feature Point Based Performance Metrics for Different Surfaces

Different metrics in IDO1 sequence

Different metrics in ODO1 sequence

Surfaces TFR OFSR RPEt RPEr ATE TFR OFSR RPEt RPEr ATE
(%) (®/m) (m) (%) (/m) (m)

3 0.854 0.975 1.091 0.994 0.244 0.990 0.998 21.534 0.473 0.205

4 0.852 0.969 1174 1.022 0.252 0.989 0.998 23.571 0487 0.228

5 0.851 0.969 1.273 112 0.278 0.989 0.998 25913 0.505 0.272

6 0.835 0.966 1.278 1.149 0.280 0.988 0.998 26.639 0.519 0.308

Infinity 0.783 0.964 1438 1.238 0.342 0.976 0.998 28.984 0.548 0.341
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Fig. 10 A portion of trajectories of different Point based VIO systems. This figure illustrates a portion of trajectories of different point based VIO
systems on the PALVIO dataset benchmark include sequences: 3601, 3600, D01, D04, ID10, ODO1

Table 4 Comparison of Performance for RPEt RPEr ATE in Point Feature Based VIO with LF-VIO

Items Different results of RPEt(%) Different results of RPEr((°/m) Different results of ATE (m)
Ours LF-VIO Ours LF-VIO Ours LF-VIO

IDO1 1.091 1416 0.994 1.139 0.244 0.288
D02 0.750 0.813 0.394 0.535 0.241 0.409
D03 0.600 0.626 0.402 0451 0.195 0.355
D04 0.694 0.810 0.307 0.332 0.100 0.154
IDO5 1.034 0.952 0.324 0374 0.189 0.274
D06 0.873 0910 0.384 0.391 0.063 011
D07 0.926 1.144 0.389 0.398 0.112 0.379
D08 0.880 1.014 0.629 0.601 0.110 0.186
D09 0911 0.873 0430 0.426 0.158 0.203
D10 2.075 1.567 0.980 0.972 0.179 0328
0ODO1 21.534 29.188 0.473 0.542 0.205 0.344
0D02 14.091 16.386 0.276 0.305 0.122 0.143
3601 6.800 11.242 0.295 0.366 0.317 0.680
3600 12.001 19.214 0.420 0.627 1.126 1.641
Mean 4.590({25%) 6.154 0.478(]10%) 0.533 0.240(}39%) 0.393

use of optical flow tracking in the front-end, which aligns
with the technical approach of the proposed method.
The comparison is performed on the PALVIO dataset,
and the results are summarized in Table 5. As shown in
the table, Geotri-VIO consistently outperforms VINS-
Mono for all test sequences. For instance, in the ID0O1

sequence, Geotri-VIO achieves an RPEt of 1.091, RPEr of
0.994 degree/m, and ATE of 0.244 m, significantly lower
than VINS-Mono’s 2.446, 1.431 degree/m, and 0.920 m,
respectively. Similarly, in the OD01 sequence, Geotri-
VIO achieves an RPEt of 21.534, RPEr of 0.473 degree/m,
and ATE of 0.205 m, compared to VINS-Mono’s 22.181,
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Fig. 11 Point based VIO trajectories with varying numbers of projection planes. This figure illustrates point based VIO trajectories with varying

numbers of projection planes on sequences: ID0T, ODO1

Table 5 Comparison of Performance for Point Feature Based VIO with VINS-mono in PALVIO Dataset

Items Different results of RPEt(%) Different results of RPEr((°)/m) Different results of ATE (m)
Ours VINS Ours VINS Ours VINS
IDO1 1.091 2446 0.994 1431 0.244 0.920
D02 0.750 1.542 0.394 0614 0.241 0414
D03 0.600 1.987 0.402 0.725 0.195 0.345
D04 0.694 1.719 0.307 0.649 0.100 0.247
D05 1.034 1.957 0.324 0578 0.189 0453
D06 0.873 2193 0.384 0.645 0.063 0.204
D07 0.926 2.045 0.389 0.539 0.112 0.386
D08 0.880 1.905 0.629 0.752 0.110 0.213
D09 0.911 2133 0.430 0.557 0.158 0.391
D10 2.075 3.774 0.980 1.567 0.179 0539
OD01 21.534 22.181 0.473 0.539 0.205 1.309
0D02 14.091 failed 0.276 failed 0.122 failed
Mean 3.705 ({5%) 3.898 0.499 ({36%) 0.781 0.160 ({69%) 0.529

0.539 degree/m, and 1.309 m. Notably, VINS-Mono fails
to complete the OD02 sequence due to its limited FoV,
which leads to insufficient feature tracking in large-scale
environments. In contrast, Geotri-VIO successfully
achieves an RPEt of 14.091, RPEr of 0.276 degree/m,
and ATE of 0.122 m in the same sequence. On aver-
age, Geotri-VIO reduces RPEt by 5%, RPEr by 36%, and
ATE by 69% compared to VINS-Mono. These results
demonstrate the superior performance of the proposed
Geotri-VIO framework in handling complex environ-
ments, leveraging the significant advantages of wide FoV

cameras and the effectiveness of the triangular prism
projection model.

Evaluation of feature line extraction and tracking

In point and line-based VIO systems, a higher suc-
cess rate in line tracking indicates that more effective
line features are utilized for pose estimation, enabling
more accurate position estimation and ensuring stabil-
ity in varying lighting conditions and dynamic environ-
ments. To evaluate the performance of the proposed
multi-prism projection model for line features, the
same images are mapped onto the multi-prism model
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b Trihedron image lines tracking

Fig. 12 Feature line extraction and tracking results under different projection models. Red lines represent those that remain trackable, green lines
indicate those tracking failed

Table 6 Comparison of Performance for TLR

Items Ours results of TLR LF-PGVIO
results of
TLR

D01 0.503 0412

D02 0.645 0616

D03 0.661 0.646

D04 0.608 0.583

D05 0.596 0.558

D06 0.575 0.531

D07 0.539 0.522

D08 0.600 0576

D09 0.614 0.581

D10 0.483 0452

0ODOo1 0.565 0528

0D02 0.592 0.542

360! 0.457 0.403

3600 0.439 0358

Mean 0.563 0522

and the omnidirectional model. The ELSED algorithm
is used to extract line features, followed by the appli-
cation of LBD descriptors for feature description and
matching. The following metric is utilized to assess the
model’s effectiveness in leveraging line features:

Tracked Line Ratio(TLR) reflects the tracking capabil-
ity of line segments with the current projection model. An
increase in TLR indicates improved tracking accuracy of
line features. The value of TLR is calculated as:

Nit
VIR = ——- (37)

Nia

where NpT represents the number of line segments suc-
cessfully tracked across frames, and N denotes the total
number of line segments extracted in the previous frame.
A higher TLR allows the VIO system to effectively utilize
more line features, thereby enhancing positioning accu-
racy and improving stability in complex environments.

Table 6 and Fig. 12 present a comparative analysis of
the line feature tracking performance between the tri-
angular prism projection model and the omnidirectional
projection used in LF-PGVIO. In Fig. 12, the results of
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line feature extraction and tracking with different pro-
jection models are clearly illustrated: red lines represent
successfully tracked features, while green lines indicate
the features that failed in tracking. The results show that
the triangular prism projection model achieves a higher
proportion of successfully tracked red lines, demon-
strating its superior line feature tracking stability. Mean-
while, the reduced number of green lines indicates that
the model maintains better geometric consistency under
large FoV, minimizing tracking failures caused by dis-
tortions. These improvements underscore the triangu-
lar prism projection model’s effectiveness in line feature
detection and tracking.

Table 6 compares the TLR metrics between the trian-
gular prism projection model and the omnidirectional
projection used in LE-PGVIO for all test sequences. The
results demonstrate that the triangular prism projection
model consistently achieves higher TLR values, reflect-
ing its superior ability to maintain and track line fea-
tures effectively. For example, in the challenging indoor
sequence IDO01, the triangular prism projection model
achieves a TLR of 0.503, significantly higher than LEF-
PGVIO’s 0.412. Similarly, in ID03 and IDQ9, the TLR
values of 0.661 and 0.614 surpass LE-PGVIO’s 0.646 and
0.581, respectively. These improvements highlight the
triangular prism projection model’s effectiveness in pre-
serving geometric consistency and minimizing track-
ing failures in complex environments. The superiority of
the triangular prism projection model is also evident in
outdoor sequences. In ODO1, it achieves a TLR of 0.565,
compared to LF-PGVIO’s 0.528, while in ODO02 it reaches
0.592, outperforming LE-PGVIO’s 0.542.

Furthermore, in the real-world data, which were col-
lected in highly dynamic environments and significant
lighting variations, the triangular prism projection model
continues to demonstrate its robustness. In the 3601
sequence, it achieves a TLR of 0.457, compared to LF-
PGVIO’s 0.403, while in the 3600 sequence, it attains
a TLR of 0.439, significantly higher than LF-PGVIO’s
0.358. These results further validate the robustness of
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the proposed model in diverse and challenging environ-
ments. The consistent improvements for all sequences
underscore the advantages of the triangular prism pro-
jection model in handling complex scenarios.

Overall, the average TLR for all sequences with the tri-
angular prism projection model is 0.563, representing an
improvement over LE-PGVIO’s 0.522. While LE-PGVIO
employs the OCSD method for extracting line features,
its RLBD descriptor remains fundamentally reliant on the
LBD descriptor, which requires strict geometric consist-
ency. By preserving geometric consistency and reduc-
ing distortions, the triangular prism projection model
ensures more reliable and accurate line feature tracking.

To validate that the triangular prism projection model
outperforms other multi-prism projection models in line
feature tracking, the TLR metric is analyzed for differ-
ent numbers of projection planes, as shown in Table 7.
The results indicate that the triangular prism projection
model with three planes achieves the highest TLR in both
indoor (ID01) and outdoor (OD01) sequences, with TLR
values of 0 .503 and 0.565, respectively. As the number of
projection planes increases, the TLR steadily decreases.
For instance, in the ID01 sequence, the TLR drops from
0 .503 for the three-plane configuration to 0.462 for the
six-plane configuration. Similarly, in the ODO01 sequence,
the TLR declines from 0.565 to 0.529 over the same
range. When the number of projection planes increases
to the equidistant cylindrical projection (infinity planes),
the line feature extraction and tracking algorithm fails
entirely, underscoring the importance of maintaining
geometric consistency for effective line feature tracking.

Feature point and line based VIO evaluation

Using the metrics RPEt, RPEr, and ATE, the performance
of the point and line-based Geotri-VIO system is evalu-
ated, as summarized in Table 8, with corresponding tra-
jectories shown in Fig. 13. The experimental results reveal
that Geotri-VIO consistently outperforms LF-PGVIO
for all test sequences. On average, Geotri-VIO reduces
RPEt by 27%, RPEr by 11%, and ATE by 41% compared to

Table 7 Performance Comparison of Feature Point and Line-Based Metrics Across Different Projection Models

Different metrics in IDO1 sequence

Different metrics in ODO1 sequence

Surfaces TLR RPEt RPEr ATE TLR RPEt RPEr ATE
(%) ((°)/m) (m) (%) (°)/m) (m)

3 0.503 0.958 0.923 0.219 0.565 20.067 0.466 0.183

4 0.496 1.003 0.989 0.231 0.551 22.968 0.497 0216

5 0477 1.093 1.100 0.258 0.532 24.042 0.511 0.233

6 0.462 1.201 1.109 0.260 0.529 25335 0519 0.260

Infinity failed failed failed failed failed failed failed failed
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Table 8 Comparison of RPEt, RPEr, and ATE for the Proposed Framework and LF-PGVIO

Items Different results of RPEt(%) Different results of RPEr((°/m) Different results of ATE (m)
Ours LF-PGVIO Ours LF-PGVIO Ours LF-PGVIO
IDO1 0.958 1.371 0.923 1.080 0.219 0.278
D02 0.738 0.796 0.374 0.500 0.183 0.306
D03 0.582 0.609 0.363 0423 0.091 0.192
D04 0.692 0.676 0.273 0.268 0.128 0.149
IDO5 0.955 0.920 0.302 0.342 0.197 0444
ID06 0.814 0.903 0.343 0.359 0.051 0.105
D07 0.918 1.244 0.371 0.385 0.093 0.226
D08 0.716 1.102 0.627 0.616 0.088 0.184
ID09 0.887 0.819 0426 0.410 0.144 0.186
D10 1.985 1.966 0.920 0.941 0.150 0.299
0ODO01 20.067 28382 0.466 0.563 0.183 0.335
0D02 11.928 15.694 0.251 0.286 0.096 0.124
3601 5.110 9.934 0.273 0.360 0.263 0.606
3600 11.367 14.071 0.385 0.554 1.064 1.568
Mean 4.113({27%) 5.606 0.450(]11%) 0.506 0.211({41%) 0.357
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Fig. 13 A portion of trajectories of different point and line based VIO systems. This figure illustrates a portion of trajectories of different point
and line based VIO systems on the PALVIO dataset benchmark and our dataset include sequences: 3601, 3600, D05, ID07, D09, OD02

LE-PGVIO, demonstrating significant improvements in
trajectory estimation accuracy.

For instance, in the challenging ID01 sequence,
Geotri-VIO achieves an RPEt of 0.958, RPEr of 0.923
degree/m, and ATE of 0.219 m, all of which are superior
to LF- PGVIO’s corresponding values of 1.371, 1.080
degree/m, and 0.278 m. Similarly, in the ODO01 sequence,

Geotri-VIO achieves an RPEt of 20.067, RPEr of 0.466
degree/m, and ATE of 0.183 m, significantly outperform-
ing LE-PGVIO. These results highlight the robustness of
the Geotri-VIO system in both indoor and outdoor sce-
narios, effectively reducing trajectory drift and improving
accuracy.
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Fig. 14 Point and line based VIO trajectories with varying numbers of projection planes. This figure illustrates point and line based VIO trajectories

with varying numbers of projection planes on sequences: ID01, ODO1

To further validate the performance of Geotri-VIO
in highly dynamic and complex environments, the 3601
and 3600 sequences are analyzed. In the 3601 sequence,
Geotri-VIO achieves an RPEt of 5.110, RPEr of 0.273
degree/m, and ATE of 0.263 m, compared to LF-PGVIO’s
9.934, 0.360 degree/m, and 0.606 m, respectively. Simi-
larly, in the 3600 sequence, Geotri-VIO attains an RPEt
of 11.367, RPEr of 0.385 degree/m, and ATE of 1.064 m,
significantly outperforming LF-PGVIO’s 14.071, 0.554
degree/m, and 1.568 m. These results demonstrate the
robustness of Geotri-VIO in handling dynamic obstacles
and varying lighting conditions. The consistent improve-
ments in all metrics underscore the effectiveness of the
proposed framework in real world applications.

Additionally, the performance of the VIO system for
different numbers of projection planes is evaluated using
the ID01 and ODO1 sequences. The experimental results
are presented in Table 7, with corresponding trajectories
shown in Fig. 14. The results indicate that the triangular
prism projection model with three planes achieves the
best overall performance, with the lowest RPEt, RPEr,
and ATE values in both sequences. For example, in the
ID01 sequence, the RPEt increases from 0 .958% (three
planes) to 1.201% (six planes), while the ATE increases
from 0.219 m to 0.260 m. A similar trend is observed
in the ODO1 sequence, where the RPEt and ATE also
degrade as the number of projection planes increases.
When the projection model reaches the equidistant

Table 9 Comparison of RPEt, RPEr, and ATE for the Proposed Framework and PL-VINS

Items Different results of RPEt(%) Different results of RPEr((°/m) Different results of ATE (m)
Ours PL-VINS Ours PL-VINS Ours PL-VINS

D01 0.958 2102 0.923 1.960 0.219 0532
D02 0.738 1.292 0.374 0.903 0.183 0454
D03 0.582 1.157 0.363 0.826 0.091 0.300
D04 0.692 0972 0.273 0439 0.128 0.297
D05 0.955 1.199 0.302 0421 0.197 0518
D06 0.814 1.226 0.343 0.459 0.051 0.195
D07 0.918 1.138 0.371 0417 0.093 0.256
D08 0.716 1.229 0.627 0.809 0.088 0.236
D09 0.887 1.051 0.426 0.502 0.144 0.240
ID10 1.985 2.293 0.920 1.341 0.150 0.408
0DO01 20.067 22221 0.466 0.590 0.183 0.944
0D02 11.928 31.150 0.251 0.697 0.096 2524
Mean 3.353(]38%) 5.503 0.470(]39%) 0.780 0.135(]76%) 0.575
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cylindrical projection (infinity planes), the system fails
entirely, underscoring the importance of geometric con-
sistency in ensuring the accuracy and stability of VIO
systems.

Finally, to further validate the performance of the pro-
posed Geotri-VIO framework in point and line feature
based VIO, a comparison is conducted with PL-VINS, a
state-of-the-art VIO algorithm designed for pinhole cam-
eras that shares a similar technical approach in front-end
feature tracking (optical flow for point features and line
feature extraction and matching). The comparison is per-
formed on the PALVIO dataset, and the results are sum-
marized in Table 9. As shown in the table, Geotri-VIO
consistently outperforms PL-VINS for all test sequences.
For instance, in the ID01 sequence, Geotri-VIO achieves
an RPEt of 0.958, RPEr of 0.923 degree/m, and ATE of
0.219 m, significantly lower than PL-VINS’s 2.102, 1.960
degree/m, and 0.532 m, respectively. Similarly, in the
ODO01 sequence, Geotri-VIO achieves an RPEt of 20.067,
RPEr of 0.466 degree/m, and ATE of 0.183 m, compared
to PL-VINSs 22.221, 0.590 degree/m, and 0.944 m.
Notably, in the OD02 sequence, PL-VINS exhibits sig-
nificantly larger errors, with an RPEt of 31.150, RPEr of
0.697 degree/m, and ATE of 2.524 m, while Geotri-VIO
achieves an RPEt of 11.928, RPEr of 0.251 degree/m,
and ATE of 0.096 m. On average, Geotri-VIO reduces
RPEt by 38%, RPEr by 39%, and ATE by 76% compared
to PL-VINS. These results demonstrate the superior
performance of the proposed Geotri-VIO framework in
handling complex environments, leveraging the advan-
tages of wide FoV cameras and the effectiveness of the
triangular prism projection model for both point and line
features.

These findings validate the effectiveness of the trian-
gular prism projection model in preserving geometric
consistency and enhancing feature tracking performance.
By integrating both point and line features, Geotri-VIO
achieves superior trajectory estimation accuracy com-
pared to benchmarks, particularly in large FoV scenarios
and complex environments.
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Ablation Study on Geotri-VIO

To evaluate the impact of different projection models
and feature types on the performance of Geotri-VIO, we
conducted an ablation study. The results are presented in
Table 10, which compares the Mean Relative Pose Error
in translation (MRPEt), rotation (MRPEr), and Mean
Absolute Trajectory Error (MATE) for four configura-
tions: Tri-PL, Tri-P, Omni-PL, and Omni-P. Here, Tri
refers to the triangular prism projection model proposed
in this paper, while Omni denotes the omnidirectional
projection model adopted by state-of-the-art meth-
ods (Z. Wang et al,, 2022; Z. Wang, Yang, Shi, Li, et al,,
2024; Z. Wang, Yang, Shi, Zhang, et al., 2024). PL and P
represent the use of point-line features and point-only
features, respectively. These metrics were computed by
averaging the results over the PALVIO Dataset (IDO1-
ID10 and OD01-ODO02) as well as the Custom Dataset
(3601 and 3600), ensuring a comprehensive evaluation in
diverse scenarios.

In addition to accuracy metrics, we also examined
computational efficiency by evaluating CPU utilization
and memory consumption for each configuration. To
ensure a fair comparison, all methods were executed at a
fixed processing frequency of 10 Hz, which is one of the
most commonly used frame rates in VIO applications.
This setup allows us to assess the computational over-
head associated with different projection models and fea-
ture types in realistic conditions. The results reveal that
while the triangular prism projection model consistently
achieves higher accuracy, it also demonstrates a balanced
trade-off between accuracy and computational cost,
particularly in terms of memory efficiency. These find-
ings provide valuable insights into the practical impli-
cations of projection model selection in real world VIO
deployments.

Impact of Projection Models: The triangular prism
projection model (Tri) consistently outperforms the
omnidirectional projection model (Omni) for all feature
types. For instance, in the point-line feature setting, Tri-
PL reduces MRPEt by 27% (4.113 vs. 5.606), MRPEr by
11% (0.450 vs. 0.506), and MATE by 41% (0.211 vs. 0.357)
compared to Omni-PL. In the point-only feature set-
ting, Tri-P achieves reductions of 25% in MRPEt (4.590

Table 10 Performance Metrics of Different Projection Models and Feature Types

Settings MRPEt MRPEr MATE CPU MEM Freq
(%) (°)/m) (m) (%) (GB) (Hz)
Tri-PL 4113 0450 0.211 38.254 0.064 10
Tri-P 4.590 0478 0.240 25318 0.048 10
Omni-PL 5.606 0.506 0357 44577 0.304 10
Omni-P 6.154 0533 0.393 25.125 0.048 10
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vs. 6.154), 10% in MRPEr (0.478 vs. 0.533), and 39% in
MATE (0.240 vs. 0.393) relative to Omni-P. These results
demonstrate that the triangular prism projection model
is better suited for handling feature data in VIO systems,
aligning closely with the theoretical analysis derived from
the mathematical proofs in Section Methodology.

In addition to the accuracy, the triangular prism pro-
jection model also exhibits advantages in computational
efficiency. Compared to Omni-PL, Tri-PL reduces mem-
ory usage by 79% (0.064 GB vs. 0.304 GB) while achieving
a lower CPU load (38.254% vs. 44.577%). This improve-
ment stems from the local geometric consistency of the
triangular prism projection, which enables a more com-
pact representation and efficient tracking of line features.
In contrast, the omnidirectional projection model lacks
geometric consistency, often requiring more complex
methods for describing and tracking line features, lead-
ing to higher memory consumption and CPU load. A
similar trend is observed in the point-only setting: Tri-P
and Omni-P exhibit nearly identical memory consump-
tion (0.048 GB), while Tri-P needs a slightly higher CPU
load (25.318% vs. 25.125%). This minor difference arises
because, apart from the front-end projection model, both
configurations share identical VIO settings. Moreover,
since the triangular prism projection is derived from the
omnidirectional image through a simple transformation,
the additional computational cost is negligible, explain-
ing the nearly identical resource usage.

These results highlight that the triangular prism projec-
tion model not only enhances state estimation accuracy
but also achieves a more favorable balance between com-
putational cost and performance, making it a compelling
choice for VIO systems.

Impact of Feature Types: The use of point-line fea-
tures (PL) consistently improves performance compared
to point-only features (P) with both projection models.
For example, in the triangular prism projection setting,
Tri-PL reduces MRPEt by 10% (4.113 vs. 4.590), MRPEr
by 5% (0.450 vs. 0.478), and MATE by 12% (0.211 vs.
0.240) compared to Tri-P. Similarly, in the omnidirec-
tional projection setting, Omni-PL achieves reductions
of 9% in MRPEt (5.606 vs. 6.154), 5% in MRPEr (0.506
vs. 0.533), and 9% in MATE (0.357 vs. 0.393) relative to
Omni-P.

This indicates that incorporating line features enhances
the system’s ability to estimate both translation and rota-
tion, which is consistent with the conclusions of Wang
et al. (2024). However, this accuracy improvement comes
at the cost of increased resource consumption. Com-
pared to point-only features, incorporating point-line
features needs higher CPU load with both projection
models: Tri-PL incurs a 51% increase over Tri-P (38.254%
vs. 25.318%), while Omni-PL sees a 77% increase over
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Omni-P (44.577% vs. 25.125%). Memory usage also rises,
with Tri-PL consuming 33% more than Tri-P (0.064 GB
vs. 0.048 GB) and Omni-PL using 533% more than Omni-
P (0.304 GB vs. 0.048 GB).

These results demonstrate that while line features sig-
nificantly enhance accuracy, they introduce a notable
computational overhead, particularly in the omnidirec-
tional setting. The triangular prism projection model,
however, mitigates this cost by enabling more efficient
line feature description and tracking algorithms, achiev-
ing a better trade-off between accuracy and computa-
tional efficiency.

Feature Utilization Across Projection Models: In the
Impact of Feature Types section, it is observed that the
reductions in MRPEt, MRPEr, and MATE achieved by
Tri-PL over Tri-P (10%, 5%, 12%) exceed those achieved
by Omni-PL over Omni-P (9%, 5%, 9%). This suggests
that the triangular prism projection model benefits more
from incorporating line features compared to the omni-
directional projection model, likely due to its compat-
ibility with more effective line feature description and
tracking methods. This further supports its suitability for
handling feature data in VIO systems.

Discussion: The ablation study demonstrates that both
the choice of projec- tion model and the inclusion of line
features significantly impact VIO performance in terms
of accuracy and computational efficiency. The triangular
prism projection model not only improves state estima-
tion accuracy but also achieves a better balance between
memory usage and CPU load, making it a computation-
ally efficient alter- native to the omnidirectional projec-
tion model. Additionally, the use of point-line features
consistently enhances localization accuracy using both
projection models, with the triangular prism projection
benefiting more from the inclusion of line fea- tures. This
suggests that its structured representation is more com-
patible with efficient line feature tracking. Overall, the
results highlight the advantage of adopting a projec- tion
model that not only preserves geometric consistency but
also facilitates effective feature utilization, leading to a
more robust and efficient VIO system.

Conclusion

This paper introduces Geotri-VIO, a panoramic VIO
framework that leverages a multi-prism projection
model to enhance geometric consistency in panoramic
images, significantly improving visual information uti-
lization, feature matching accuracy, and overall VIO
system performance. Theoretical analysis confirms that
the proposed framework ensures geometric consist-
ency and achieves optimal performance with a triangu-
lar prism projection. By adapting to both point features
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and combined point-line features, the framework
demonstrates strong compatibility with various front-
end visual features. Experimental results validate that
Geotri-VIO consistently outperforms benchmarks in
multiple evaluation metrics, achieving optimal geomet-
ric consistency with the triangular prism projection, in
alignment with theoretical predictions. However, the
proposed framework still has certain limitations. First,
like most VIO systems, it suffers from accumulated
errors over long trajectories, which is a fundamen-
tal challenge in odometry-based systems. Second, the
reliance on traditional feature extraction and tracking
methods makes the system vulnerable to motion blur
in high-speed scenarios. In future, we plan to address
these limitations by extending the framework to a full
SLAM system with loop closure detection and explor-
ing learning-based methods for feature extraction and
tracking. These improvements will enhance the perfor-
mance and applicability of the proposed framework in
real world scenarios.
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