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Abstract 

Panoramic camera-based Visual-Inertial-Odometry (VIO) systems play a crucial role in robotic navigation, autonomous 
driving, and virtual reality applications, owing to their large Field-of-View and enhanced localization capabilities. 
However, the nonlinear distortions caused by the lack of geometric consistency in projection models for panoramic 
images pose significant challenges to feature extraction and tracking algorithms. In this paper, we present Geotri-VIO, 
a novel VIO system that addresses these challenges using a multi-prism projection model. By constructing the multi-
prism projection planes such that each face is tangent to the inherent projection sphere of the panoramic camera, 
the proposed model ensures strict geometric consistency in each projection plane while maintaining global geo-
metric consistency, which is supported by mathematical proof. Additionally, we evaluate the impact of increasing 
the number of projection planes and demonstrate that triangular prism projection outperforms other multi-prism 
projection models. To validate its effectiveness, Geotri-VIO is tested on public datasets. Experimental results show 
that the triangular prism projection significantly improves the tracking accuracy of both point and line features, 
thereby enhancing the overall localization performance of the VIO system.
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Introduction
With the rapid advancements in fields such as robotic 
navigation, autonomous driving, Virtual Reality (VR) and 
Augmented Reality (AR), the need for precise localization 
and environmental perception is growing steadily (Hua 
et  al., 2023; Li et  al., 2021), particularly in Global Posi-
tioning System (GPS) denied environments (Cao et  al., 
2022). Visual-Inertial-Odometry (VIO) systems, which 
integrate visual and inertial data to deliver accurate pose 

estimation, have become a significant area of research 
(Qin et  al., 2018). While most existing studies focus on 
VIO systems utilizing pinhole camera models (Campos 
et al.,2021; Yang et al., 2023; Yan et al., 2024; El-Sheimy 
& Li, 2021), panoramic cameras (Gao et al., 2022;  Wang 
et al., 2022) are gaining attention due to their large Field-
of-View (FoV) and ability to capture rich environmental 
information (Wu et al., 2024; Li et al., 2024).

In VIO systems, geometric consistency plays a criti-
cal role. Geometric consistency refers to the require-
ment that the projection of image features and their 
spatial relationship in the physical scene remain consist-
ent in pose estimation (Amato et  al., 2011). For effec-
tive feature matching and optimization using visual and 
inertial data, the geometric structure of these data must 
align with the real-world spatial layout. However, many 
existing panoramic VIO algorithms utilize models such 
as equidistant cylindrical projection or omnidirectional 
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projection, which abandon perspective projection to cap-
ture scene information. This approach compromises the 
proportional representation of real-world scenes, causing 
panoramic camera images to lose geometric consistency 
with the physical environment. The lack of geometric 
consistency causes nonlinear distortions, making it more 
difficult to extract feature points and line segments from 
panoramic images, reducing tracking accuracy, and ulti-
mately negatively impacting the overall performance of 
VIO systems.

To address these challenges, this work proposes a novel 
multi-prism projection model for panoramic cameras 
and designs a panoramic VIO system, Geotri-VIO, that 
integrates both point features and combined point-line 
features to validate the performance of the proposed 
model. Specifically, we construct the multi-prism projec-
tion planes in such a way that each face is tangent to the 
inherent projection sphere of the panoramic camera. By 
calculating the azimuth and elevation angles of the points 
on the projection planes in the spherical coordinate sys-
tem, pixel values are assigned. Mathematical proof dem-
onstrates that in multi-prism projection, the geometric 
relationship of pixels within each plane strictly adheres 
to spatial consistency, preserving the relative positions 
of feature points and thereby improving the accuracy of 
feature extraction and tracking. Figure 1 shows the pro-
jection results of different models in the same scenario, 
including equidistant cylindrical projection, panoramic 
annular projection, the triangular prism projection from 

the multi-prism projection model, and Cubemap projec-
tion. By examining the highlighted region (red box), it 
can be observed that equidistant cylindrical projection 
and panoramic annular projection exhibit significant 
distortions, causing the images to lose geometric con-
sistency. Additionally, some continuous geometric struc-
tures in the real world become discontinuous after being 
mapped to the projection image through the Cube map 
projection model, which poses a significant challenge 
for feature-based VIO systems. In contrast, the triangu-
lar prism projection best preserves the linear structure 
and angular relationships, making the projection model 
most consistent with the geometric characteristics of the 
Three-Dimensional (3D) point cloud map.

To determine the optimal number of prism faces, this 
study systematically compares the projection charac-
teristics of triangular, quadrilateral, pentagonal, and 
hexagonal prisms, extending the analysis to equidistant 
cylindrical projection. With rigorous mathematical ver-
ification of angular deviations in projection plane inter-
faces, the results demonstrate that triangular prism 
projection exhibits superior global geometric consist-
ency compared to other polygonal prism projections. 
Theoretical analysis indicates that increasing the num-
ber of prism faces progressively approximates to equi-
distant cylindrical projection, leading to a reduction in 
global spatial consistency. Finally, experimental valida-
tion confirms these theoretical findings.

Fig. 1  Projection results of different models under the same scenario. a 3D point cloud map. b Equidistant cylindrical projection. c Panoramic 
annular projection. d Triangular projection. e Cubemap projection
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In this paper, the main contributions and innova-
tions are summarized as follows:

•	 A panoramic VIO framework, Geotri-VIO, is 
designed to enhance the utilization of visual informa-
tion in panoramic images, improving feature match-
ing and backend optimization accuracy, thereby 
boosting the overall performance of the VIO system.

•	 A novel multi-prism projection model is introduced, 
adaptable to various VIO frontend features, address-
ing the issue of geometric inconsistency in pano-
ramic images. Theoretical analysis demonstrates the 
model’s effectiveness in improving geometric consist-
ency, and it is further validated that optimal perfor-
mance is achieved by using a triangular prism projec-
tion.

•	 To validate the effectiveness of the Geotri-VIO 
framework, extensive experiments are conducted 
using both point features and point-line combined 
features. On public datasets, our algorithm demon-
strated excellent performance in both front-end fea-
ture tracking accuracy and pose estimation precision.

Related work
This section reviews the panoramic camera projection 
models, point based panoramic VIO systems, and point 
and line based panoramic VIO systems. These methods 
illustrate the ability to integrate diverse frontend features 
within VIO systems, and offer various solutions to the 
challenges posed by panoramic cameras.

Panoramic camera projection models
Panoramic cameras have gained a widespread atten-
tion in the field of VIO due to their ability to capture a 
larger Field-of-View (FoV) and perceive a broader sur-
rounding environment. However, panoramic cameras 
abandon perspective projection for capturing scene 
information, resulting in the images that fail to repre-
sent real world scenes. In other words, the panoramic 
camera images no longer maintain geometric consist-
ency with the real-world scene. Currently, the panoramic 
camera projection models widely used in panoramic VIO 
systems include the omnidirectional projection model 
(Scaramuzza, Martinelli, and Siegwart, 2006), equidis-
tant cylindrical projection model (Yang, 2021) and Cube-
map projection model (Wang et  al., 2018), as shown in 
Fig.  2. The panoramic annular image, calibrated with a 

Fig. 2  Three commonly used projection models and corresponding projection images in VIO. This figure illustrates three commonly used 
projection models and their corresponding projection images in VIO. Omnidirectional projection model and panoramic annualr image. Equidistant 
cylindrical projection model and panoramic image. Cubemap projection model and Cubemap image
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few parameters (Scaramuzza, Martinelli, and Siegwart, 
2006), efficiently establishes pixel-to-scene correspond-
ence, making it widely adopted in panoramic VIO sys-
tems (Wang et al., 2022;  Wang et al., 2022; Wang et al., 
2024;   Wang et  al., 2024). Nevertheless, this projection 
model completely disrupts the perspective relationship 
between the real-world scene and the pixel image, creat-
ing significant challenges for feature processing in VIO 
front-end systems. The panoramic image, generated with 
equidistant cylindrical projection (Yang, 2021), reduces 
the distortion at the image center and has been utilized in 
some Simultaneous Localization and Mapping (SLAM) 
frameworks (Huang & Yeung, 2022; Wu et  al., 2024). 
This advantage, however, comes at the cost of increased 
distortion in the image edges, which poses additional 
difficulties for VIO front-end feature extraction and 
matching. Cubemap projection, introduced in Wang 
et  al. (2018), models a large FoV camera as a combina-
tion of multiple pinhole cameras as shown in Fig. 2. The 
resulting Cubemap consists of undistorted sub-regions 
seamlessly stitched together, partially restoring the geo-
metric consistency between the real-world scene and the 
image. While the approaches in Wang et  al. (2018) and 
Xu et al. (2022) demonstrate promising results with this 
projection model, they lack a comprehensive analysis of 
the distortion issues occurring in the boundaries between 
sub-regions.

Point based panoramic VIO systems
Point based panoramic VIO methods utilize point fea-
tures for localization and map- ping. The extended per-
ceptual range provided by panoramic cameras (Jiang 
et al., 2022, 2024; Yang et al., 2019) facilitates the extrac-
tion of a broader set of features, thereby improving the 
robustness of panoramic VIO systems. As a result, 
numerous visual odometry, VIO, and SLAM frame-
works have been developed specifically for panoramic 
cameras. For instance, OpenVSLAM (Sumikura et  al., 
2019), a general-purpose SLAM framework, employs 
sparse ORB features (Rublee et al., 2011) in its front-end 
processing and supports panoramic camera. Cubemap-
SLAM (Y.  Wang et  al., 2018) redesigns the ORB-SLAM 
(Mur-Artal et al., 2015) framework for piecewise-pinhole 
monocular fisheye cameras, optimizing feature extrac-
tion across sub-regions. PAL-SLAM (Wang et  al., 2022) 
and 360ORB-SLAM (Chen et  al., 2024) employ ORB 
(Mur-Artal, Montiel, and Tardos, 2015) feature points for 
360◦ camera SLAM systems. Based on PAL-SLAM(Wang 
et al., 2022), the recent PAL-SLAM2 (Wang et al., 2024) 
improves feature tracking in the negative hemisphere of 
360◦ cameras, addressing the limitations of traditional 
frameworks and effectively handling rapid turns, low-
light conditions, and sudden lighting changes. Similarly, 

LF-VIO (Wang et  al., 2022), developed based on the 
VINS-MONO (Qin et  al., 2018) framework, presents 
a VIO system specifically designed for 360◦ cameras, 
addressing the challenges of feature point tracking and 
processing in the negative hemisphere. More recently, 
LF-VISLAM (Wang et al., 2024) is proposed as an exten-
sion of LF-VIO (Wang et  al., 2022), incorporating a 
loop closure module for 360◦ cameras based SLAM sys-
tem, which further enhances the system’s accuracy and 
robustness. Despite their utility, these approaches rely on 
traditional feature detection, description, and matching 
pipelines. The inherent lack of geometric consistency in 
panoramic images results in significant changes in feature 
descriptors under varying viewpoints, reducing matching 
performance. Methods based on optical flow also suffer 
from similar geometric consistency issues, limiting their 
effectiveness.

Point and line based panoramic VIO systems
Point and line based VIO methods enhance system per-
formance by integrating line features into the front-end 
and utilizing line constraints in back-end optimization. 
As a result, the performance of line feature detection 
and tracking is critical to the overall efficiency of these 
systems. Early point and line based VIO systems, such 
as PL-VIO (He, Zhao, Guo, He, and Yuan, 2018) and 
PL-VINS (Fu et  al., 2020), typically employed tradi-
tional line detection algorithms like LSD (Von Gioi et al., 
2012) and ELSED (Suárez, Buenaposada, and Baumela, 
2022), which rely on local contour-based approaches. 
The detected line features are commonly described and 
matched using the Line-Band-Discriptor (LBD) descrip-
tor (Zhang & Koch, 2013) in early point and line based 
VIO system. In recent years, learning-based methods 
for line feature detection, such as SOLD2 (Pautrat et al., 
2021) and DeepLSD (Pautrat et al., 2023), were proposed, 
leveraging deep neural networks to improve detection 
accuracy and robustness. Recently, AirSLAM (Xu et  al., 
2024) proposed PLNet, a learning-based network capable 
of real-time line detection and matching. However, these 
methods rely on input images with geometric consist-
ency and are thus not directly applicable to panoramic 
VIO systems. Unified Line Segment Detection (ULSD) 
(Li et  al., 2021), another learning-based line detection 
method, is specifically designed for detecting line seg-
ments in both distorted and undistorted images, making 
it particularly well-suited for panoramic cameras. How-
ever, ULSD focuses solely on line detection and lacks the 
functionality for matching and tracking detected lines. 
While learning-based methods offer higher flexibility in 
feature extraction and can perform better in extremely 
complex scenarios, they often rely on Graphics Pro-
cessing Unit (GPU) acceleration and incur significant 
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computational overhead, making it challenging to ensure 
real-time performance. More recently, LF-PGVIO (Wang 
et  al., 2024) recombined the LBD descriptor and then 
proposed the RLBD descriptor, which is used for describ-
ing and matching line segments in panoramic images. 
Although this approach addresses some challenges, 
the lack of geometric consistency in panoramic images 
often leads to RLBD descriptor instability under varying 
viewpoints.

In summary, most panoramic VIO algorithms, whether 
point based or point and line based, rely on the geometric 
consistency of the input images in the front-end feature 
processing (as summarized in Table  1). However, these 
algorithms do not fully account for this issue. Motivated 
by this, we propose a novel panoramic VIO framework, 
where the front-end introduces a multi-prism projection 
model to achieve geometric consistency.

Methodology
This section details the proposed multi-prism projec-
tion algorithm and proves its geometric consistency. 
Additionally, the proposed VIO framework is intro-
duced, which is adaptable to both point features and 
combined point-line features. The framework is illus-
trated in Fig. 3. The overall framework consists of three 
main components: projection, point based VIO, and 
point and line based VIO. The projection component 
is discussed in Section Geometric consistency and Sec-
tion  Multi-prism projection, which detail the projec-
tion model and prove its geometric consistency. The 
point based VIO component is in Section Point based 
VIO, describing the process from front-end feature 
extraction to back-end residual construction and opti-
mization. Finally, the point and line based VIO compo-
nent in Section  Point and line based VIO extends the 
framework by integrating line features, detailing the 
process from feature extraction to residual construc-
tion and optimization for enhanced robustness.

Geometric consistency
Geometric consistency can be assessed by examining 
whether the partial derivatives of the image coordinates 
with respect to the spatial coordinates exhibit linear 
behavior under constant depth conditions. The math-
ematical proof is as follows.

For panoramic images with equidistant cylindrical 
projection, the projection relationship between pixel 
coordinates (u, v) and 3D spatial coordinates (X, Y, Z) 
is as:

Table 1  The Importance of Geometric Consistency in Different 
Feature Processing Algorithms

Algorithm type Requires 
geometric 
consistency

Harris Yes

ORB Yes

LK Yes

BRIEF Yes

LSD Yes

ELSED Yes

LBD Yes

Fig. 3  The framework of Geotri-VIO compatible with both point features and combined point-line features. Projection, point based VIO, and point 
and line based VIO are the main modules of Geotri-VIO, represented by light green, gray, and blue boxes, respectively
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where kφ and kθ are scaling factors that denote the num-
ber of pixels per radian in the latitude and longitude 
directions, respectively. For u = kφ arctan

(

Y
X

)

 , the partial 
derivatives with respect to X and Y are derived as follows:

From Eq (1): v = kθ arctan
(

Z√
X2+Y 2

)

 , the partial deriva-
tives with respect to X, Y and Z are:

(1)















φ = arctan Y
X

θ = arctan Z√
X2+Y 2

u = kφφ
v = kθ θ

(2)
∂u

∂X
= kφ · ∂φ

∂X
= kφ ·

(

− Y

X2 + Y 2

)

(3)
∂u

∂Y
= kφ · ∂φ

∂Y
= kφ · X

X2 + Y 2

(4)
∂v

∂X
= kθ ·

−Z · X
(X2 + Y 2)3/2

(5)
∂v

∂Y
= kθ ·

−Z · Y
(X2 + Y 2)3/2

These derivatives vary significantly depending on the 
position in the image, particularly near the poles or far 
from the center, where the nonlinearity becomes pro-
nounced. This positional dependence disrupts the uni-
formity of 3D spatial relationships between pixels, 
leading to geometric inconsistency. Consequently, such 
distortions affect the reliability of feature extraction, 
matching, and motion estimation in VIO systems.

Multi‑prism projection
The proposed multi-prism projection model better pre-
serves geometric consistency across different regions of the 
panoramic image. Taking the triangular prism projection 
as an example, pixel values from the panoramic image are 
mapped to the projection image by calculating their azi-
muth and elevation angles in the projection sphere’s coor-
dinate system. As illustrated in Fig. 4, the detailed proof of 
this process is provided below.

For a spatial point P(X ,Y ,Z) , it is first mapped to the 
image center coordinate system Ó of the projection plane, 
with Ó representing the center of the image, using the fol-
lowing formula:

(6)
∂v

∂Z
= kθ ·

1√
X2 + Y 2

Fig. 4  Illustration of triangular prism projection for panoramic cameras. This figure illustrates the triangular prism projection for panoramic cameras. 
The top-left inset shows a 3D schematic of the projection sphere inscribed within a triangular prism. The main diagram highlights the 3D to 2D 
projection process
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where W and H represent the horizontal and vertical res-
olutions of the projection plane, and αy and αz denote the 
horizontal and vertical viewing angles, respectively. R is 
the projection radius. Then convert y and z to the point 
p(u, v) in the coordinate system O:

Finally, the azimuth angle φ and elevation angle θ of the 
point P(X ,Y ,Z) in the projection spherical coordinate 
system are computed, and the pixel values are assigned to 
p(u, v) accordingly:

Once the panoramic camera parameters are fixed, the 
mapping relationship for the projection can be computed 
and stored. During runtime, the projection process sim-
ply looks up the computed mapping table, which has a 
time complexity of O(1) per pixel. This efficient imple-
mentation ensures that the computational overhead of 
the projection process is negligible compared to other 
components of the system.

The rate of change of the new projection plane can 
be computed by calculating the partial derivatives of 
the pixel coordinates with respect to the spatial coor-
dinates. Since the projection plane’s depth direction is 
aligned with the X-axis, the partial derivatives of u with 
respect to Y  and Z are calculated as follows:

Similarly, for v:

(7)y = R · Y
X

(8)z = R · Z
X

(9)R = 2× tan(αy/2)

W
= 2× tan(αz/2)

H

(10)u = y+ W

2
= R · Y

X
+ W

2

(11)v = z + H

2
= R · Z

X
+ H

2

(12)φ = arctan

( y

R

)

(13)θ = arctan

(

z
√

y2 + R2

)

(14)
∂u

∂Y
= R

X

(15)
∂u

∂Z
=0

The rates of change, represented by ∂u
∂Y  , ∂u

∂Z , ∂v
∂Y  and ∂v

∂Z , fol-
low linear transformations. Consequently, the triangular 
prism projection achieves local geometric consistency 
within each projection plane.

Although this work has demonstrated that each pro-
jection plane in the multi-prism projection exhibits local 
geometric consistency, such consistency does not hold 
in the boundaries between adjacent projection planes. 
Notably, the degree of global geometric consistency var-
ies with the number of prism faces. To determine the 
optimal number of prism faces, this paper conducts a 
rigorous mathematical derivation to quantify the global 
geometric consistency of the multi-prism projection.

As shown in Fig. 5, a spatial line L is projected onto the 
projection plane �(1) as l(1) and onto �(2) as l(2) . Subse-
quently, �(1) and �(2) are stitched together to form the 
two-dimensional image planes �′(1) and �′(2) , which 
simulates the imaging process of multi-prism projection. 
For clarity, we denote the Two-Dimensional (2D) image 
planes as �′(i) and the 2D lines on these planes as l′(i) . 
It can be observed that when the projection l(1) of the 
space line L crosses the intersection line l(3) between 
�(1) and �(2) , it undergoes a deflection. As a result, an 
angle θ is formed between l′(1) and l′(2) in the image 
plane, reflecting the geometric inconsistency between the 
projection planes.

To compute θ , we first calculate the cross product of 
the normal vectors of �(1) and �(3) , as well as �(2) and 
�(3) , to obtain the direction vectors of the intersection 
lines l(1) and l(2) , where �(3) is the plane formed by the 
spatial line L and the camera center O. This paper uses 
n�(i) to represent the normal vector of a plane �(i) and 
vl(i) to denote the direction vector of a line l(i):

Where ˆ(·) denotes the normalization operation of a vec-
tor. Since l(1) and l(2) are 3D projection lines, the angle 
between them cannot be directly used to represent the 
angle θ between l′(1) and l′(2) in the 2D image plane. 
Therefore, we compute the angles between l(1) and l(3) , 
as well as l(2) and l(3) , to indirectly determine θ:

(16)
∂v

∂Y
=0

(17)
∂v

∂Z
= R

X

(18)
{

vl(1) = ˆ(n�(3) × n�(1))

vl(2) = ˆ(n�(3) × n�(2))
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where l(3) can be obtained by computing the cross prod-
uct of the normal vectors of �(1) and �(2) :

Noting that the intrinsic geometric inconsistency 
between adjacent projection planes depends only on 
their relative angles and is independent of external fac-
tors. We assume without loss of generality that L is paral-
lel to both the plane �XOY  and the plane �(1) to simplify 
the mathematical proof. In this case, n�(3) and vL satisfy 
the constraint:

moreover, θ1 satisfies:

Similarly, assuming that the number of faces in the multi-
prism projection is k and the angle between �(3) and 
�XOY  is α , then �(1) , �(2) and �(3) satisfy the constraint:

(19)











θ1 = arccos
vl(1)·vl(3)

�vl(1)�·�vl(3)�
θ2 = arccos

vl(2)·vl(3)
�vl(2)�·�vl(3)�

θ = (π− θ1)− θ2

(20)vl(3) = ˆ(n�(1) × n�(2))

(21)
{

vL · n�,XOY = 0

vL · n�(1) = 0

(22)θ1 =
π

2

(23)

{

arccos
n�(1)·n�(2)

�n�(1)�·�n�(2)� = π− 2π
k
, k ∈ Z

+
≥3

arccos
n�(3)·n�,XOY

�n�(3)�·�n�,XOY � = α

where, 2π
k  represents the angle between the planes 

�(1) and �(2) , and n�,XOY  is aligned with the Z-axis. α 
denotes the angle between the planes �(3) and n�,XOY  . 
In this proof, we restrict our analysis to the case where 
α ∈ [0,π/2) due to the symmetry of the projection planes 
with respect to �XOY .

By solving the system of equations Eqs.  (18)–(23), θ 
can be expressed as a function of k and α:

Since there are k − 1 intersection lines between pro-
jection planes when the number of projection planes is 
k, this work constructs the function I to represent the 
global geometric inconsistency of the multi-prism pro-
jection for different values of k:

where, for a fixed α , I(k ,α) is monotonically increasing 
for k ∈ Z

+
≥3 , which implies that I attains its minimum 

value when k = 3 . This indicates that the global geomet-
ric consistency of the triangular prism projection model 
is the highest.

Figure  6 illustrates the theoretical derivation 
described above. As the number of projection planes 
increases, the size of each individual plane decreases, 
the boundary regions expand, and global geometric 
consistency deteriorates. In the limiting case, where 
the multi-prism projection approaches the equidistant 

(24)θ(k ,α) = arcsin [sin(2π
k
) sin(α)]

(25)I(k ,α) = arcsin [sin(2π
k
) sin(α)] · (k − 1)

Fig. 5  Geometric consistency analysis of multi-prism projection. The left figure illustrates the process of projecting a spatial line onto multiple 
projection planes, while the right figure shows the deflection of the line in the 2D image plane
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cylindrical projection, geometric consistency is entirely 
lost. In the subsequent sections, the triangular prism 
projection is employed as a representative example of 
multi-prism projections and is utilized for the extrac-
tion and matching of both point and line features.

The relationship between the number of projection 
planes and geometric consistency will be experimentally 
validated in Section Experiments.

Point based VIO
As mentioned in Section  Multi-prism projection, after 
completing the multi-prism projection, the front-end 
image achieves geometric consistency. This means that the 
feature detection and tracking methods commonly used 
in traditional VIO systems with pinhole cameras can be 
directly applied to this framework.

To establish the correspondences between different 
image frames, we first extract Shi-Tomasi corners (Shi 
et al., 1994) and then track them using the Lucas-Kanade 
method (Lucas & Kanade, 1981). Next, we apply a two-step 
geometric outlier rejection process with Random Sample 
Consensus (RANSAC), as described in Qin et  al. (2018), 
to enhance robustness. For the back-end optimization, to 
accommodate the large FoV panoramic cameras, we use 
a similar panoramic VIO work (Z.  Wang et  al., 2022) to 
construct the optimization objective function. In the point 
based VIO system, the state vector variables are shown as:

Here, xn represents the state of the body in the n-th slid-
ing window. It consists of the position P(W )

B,n  , velocity 
V

(W )
B,n  , orientation quaternion q(W )

B,n  , and the accelerometer 
and gyroscope biases, denoted as ba and bg , respectively. 
The variable t(B)c,i  represents the transformation from the 
camera coordinate system ci to the body coordinate sys-
tem. This transformation includes the position P(B)

c,i  and 
the orientation quaternion q(B)c,i  . The variable �K  denotes 
the inverse distance of the k-th feature point relative to 
its first observation on the unit sphere. N refers to the 
total number of sliding windows used in the algorithm, 
while K represents the number of feature points.

By utilizing the state variables defined in Eq. (26), the 
overall optimization objective for the point based VIO 
system is formulated as:
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Fig. 6  Projection images of models with varying numbers of projection planes. This figure illustrates how the triangular prism projection image 
progressively converges to the equidistant cylindrical projection image as the number of projection planes increases
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where χ is the optimization variable. rp , rB and rC rep-
resent the residuals for marginalization, IMU pre-inte-
gration and point features, respectively. B is the set of 
all pre-integrated IMU measurements within the sliding 
window, while C denotes the sets of point measurements 
from the observed frames. We use the Ceres Solver to 
solve the nonlinear maximum of the a posteriori estima-
tion problem and employ a Huber loss function (Huber, 
1992) to mitigate the influence of outliers, thereby 
enhancing the system’s robustness.

Point feature residual: The input to the front-end is 
the multi-prism projection image, which achieves geo-
metric consistency and enhances the accuracy of feature 
detection and tracking. In the back-end optimization, to 
support the large FoV of the panoramic camera, the point 
features are projected onto the unit spherical surface 
using the following projection function:

where, α , β and γ represent the coordinates of the feature 
points on the unit spherical surface, θ and φ represent 
the elevation angle and azimuth angle of the point on the 
unit sphere, respectively. As mentioned in Section Multi-
prism projection, θ and φ can be derived from the feature 
point coordinates (u, v) in the triangular prism projection 
image using Eqs.  (7)-(13). Then denote the transforma-
tion from (u, v) to (α,β , γ ) as π−1

c .
The point feature reprojection error is computed 

according to the following equation:

where 
(

ˆ̄u(c,i)l , ˆ̄v(c,i)l

)

 is the first observation of the l-th fea-
ture that happens in the i-th image. 

(

ˆ̄u(c,i)l , ˆ̄v(c,i)l

)

 is the 
observation of the same feature in the j-th image. b1 and 
b2 are two arbitrarily selected orthogonal bases which 

span the tangent plane of ˆ̄P
(c,j)

l .

Point and line based VIO
Since the input triangular prism projection image is 
geometrically consistent, the line feature detection and 
tracking methods commonly used in traditional pinhole 
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ẑ
(c,j)
p ,χ

�

= (b1, b2)
T ·

�

ˆ̄
P

(c,j)

l − P
(c,j)
l

�

�

�
P

(c,j)
l

�

�

�

�

ˆ̄
P

(c,j)

l = π−1
c ·

�

ˆ̄u(c,j)l , ˆ̄v(c,j)l

�T

P
(c,j)
l = R

(c)
b

�

R
(b,j)
ω

�

R
(ω)

(b,i)

�

R
(b)
c · 1

�d
· π−1

c ·
�

ˆ̄u(c,i)l , ˆ̄v(c,i)l

�T

+ P
(b)
c

�

+P
(ω)

(b,i) − P
(ω)

(b,j)

�

− P
(b)
c

�

camera SLAM systems, such as He et  al. (2018) and Fu 
et  al. (2020), can be directly applied. In this work, line 
features are detected using ELSED and tracked with LBD 
descriptors. Additionally, 3D lines are represented and 
computed using Plücker coordinates (G.  Zhang, Lee, 
Lim, and Suh, 2015).

Before introducing the back-end optimization, the 
Plücker coordinate system is brief overviewed, which 
provides an intuitive and elegant representation of 3D 
lines. In this coordinate system, a line is expressed as 
L(n,d) ∈ R

6 , where n and d denote the normal and 
direction vectors, respectively. This representation sim-
plifies the numerical computation processes of 3D line 
triangulation and reprojection.

However, during the back-end optimization in VIO, the 
Plücker coordinate introduces a hyperparameter issue, 
as it represents a 3D line with 6 Degrees of Freedom 
(DOF), but only 4-DOF are required. To address this, an 
orthonormal representation with only 4-DOF is adopted 
to represent 3D lines in the optimization process. This 
approach has demonstrated a good convergence in previ-
ous works (Fu et al., 2020; G. Zhang, Lee, Lim, and Suh, 
2015).

The orthonormal representation can be expressed as 
follows:

where ψ is a rotation matrix representing the rotation of 
the line relative to the camera coordinate system, and φ 
is a scalar representing the minimal distance from the 
center of the panoramic camera to the line.

In the point and line based VIO system, the state vector 
is defined as:

Compared to Eq. (26), the above equation’s χ includes an 
additional term, oj , which represents the orthonormal 
representation of the j-th 3D straight line.

Using Eq. (31), a new optimization objective function is 
constructed:
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where χ is the optimization variable, rp , rB and rC are the 
same as in Eq.  (27). rL represents the residuals for line 
features, where L denotes the set of line measurements.

Line feature residual: As shown in Fig.  7, line feature 
detection and tracking are performed on the geometri-
cally consistent triangular prism projection image. How-
ever, when constructing the line feature residual, the line 
features distributed in the 360◦ space need to be projected 
onto the unit spherical surface. Since a line is defined by 
two points, this work project both the start and end points 
using the projection function from Eq. (28), thereby map-
ping the entire line from the triangular prism projection 
image onto the unit sphere.

The re-projection error of the line measurement model is 
defined as follows:

where

(33)rL =
[

d
(

ps,n
l
)

d
(

pe,n
l
)

]
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rL represents the residual for the line feature, and d 
denotes the distance between the endpoints of the 
observed line segment on the unit spherical surface and 
its reprojected line segment. The vector nl is the normal 
vector to the plane that contains the reprojected line seg-
ment. The endpoints of the observed line segment on the 
unit spherical surface are denoted by ps and pe.

Experiments
This section evaluates the effectiveness of the proposed 
Geotri-VIO framework through a series of experiments, 
with its performance compared to several state-of-the-art 
algorithms. They include the benchmark LF-VIO algo-
rithm and the LF-PGVIO algorithm (Z. Wang, Yang, Shi, 
Zhang, et  al., 2024), which are designed for panoramic 
cameras, as well as the traditional pinhole camera-based 
VIO algorithms VINS-Mono and PL-VINS. Two datasets 
are employed for this purpose: a custom dataset collected 
using the experimental setup shown in Fig.  8 and the 
publicly available PALVIO dataset. The localization accu-
racy of Geotri-VIO is compared with these algorithms to 
validate its advantages.

Fig. 7  Illustration of point and line feature residuals in spherical and prism projections. The red 3D point and the red endpoints of the 3D line 
are projected onto the unit spherical surface in different image frames. The orange point and endpoints are the reprojections from other frames. 
P represents an observed 3D point, while Ps and Pe represent the observed line segment endpoints. p , ps , and pe denote features projected 
onto the unit sphere. p′ , p′s , and p′e are the mappings of these features on the triangular prism projection image
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Experiments setup and datesets
PALVIO Dataset: The PALVIO dataset is collected using 
two panoramic annular cameras paired with a CUAV-v5 
nano IMU sensor and a RealSense D435 sensor, synchro-
nized with ground-truth location and pose data captured 
by a motion capture system (Vicon T40s). The panoramic 
cameras capture monocular images with a resolution of 
1280× 960 at a rate of 30 Hz and a FoV spanning 360◦ 
horizontally and 40◦ to 120◦ vertically. The IMU sen-
sor provides angular velocity and acceleration data at 
200 Hz, while the motion capture system delivers posi-
tion and attitude data at 100 Hz, serving as the ground 
truth. All data are recorded using the Robot Operat-
ing System (ROS) and provided in raw format without 
additional processing. The dataset includes ten indoor 
sequences (ID01–ID10) and two outdoor sequences 
(OD01 and OD02). The indoor sequences are collected 
within an 8m× 10m indoor environment. Among these, 
sequences ID01, ID04, ID07, ID08, and ID09 feature 
complex motion trajectories, including rapid rotations 
and abrupt changes in direction, while sequences ID02, 
ID03, ID05, ID06, and ID10 exhibit relatively smooth 
trajectories. The outdoor sequences are recorded using 
a small vehicle equipped with a Livox Mid-360 Light 
Detection and Ranging (LiDAR) sensor, which is used 
with the Fast-LIO2 algorithm (W. Xu, Cai, He, Lin, and 
Zhang, 2022) to obtain the ground truth. OD01 covers a 
large open area, while OD02 includes uneven terrain.

Real world: To further validate the robustness and 
adaptability of the proposed Geotri-VIO framework in 
real world scenarios, real world data is collected using 
a two-wheeled self-balancing robot equipped with an 
NVIDIA Jetson Orin NX featuring a 6-core Advanced 
RISC (Reduced Instruction Set Computing) Machine 
(ARM) Central Processing Unit (CPU) for real-time 
processing. The robot is outfitted with an Insta360 X4 
camera, providing 360-degree imagery at a resolution 
of 2448× 1440 pixels and a frame rate of 30 Frames per 
Second (FPS), a Livox Mid-360 LiDAR generating point 
clouds at 10 Hz, and an IMU sensor delivering angular 
velocity and acceleration data at 200 Hz. The LiDAR data 
is utilized by the Fast-LIO2 algorithm to establish high-
precision ground truth. The real-world data includes two 
distinct sequences: the first sequence, 360I, is recorded in 
a large-scale indoor area of 60m× 40m , characterized 
by structured environments and significant lighting vari-
ations, simulating a typical indoor navigation scenario. 
The second sequence, 360O, is collected in an outdoor 
campus area of 100m× 120m , featuring unstructured 
environments and dynamic obstacles such as pedestri-
ans and vehicles, making it a challenging environment 
for VIO systems. These sequences are designed to com-
prehensively evaluate the robustness of the proposed 
method in handling diverse environmental conditions, 
including structured and unstructured scenes, dynamic 
obstacles, and varying lighting conditions.

Fig. 8  Hardware setup and outdoor environment for real world data. Our car experiment platform with a Insta 360 panoramic camera, 
a Livox-Mid-360 LIDAR, an IMU sensor and an onboard computer
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Feature point extraction and tracking evaluation
In the point based VIO system, the quality of feature 
point tracking directly determines the system’s perfor-
mance. The core of feature point tracking lies in find-
ing matching points between consecutive frames, which 
serves as the foundation for subsequent pose estimation. 
To evaluate the tracking performance of the proposed 
triangular prism projection model on point features, the 
same image is mapped to both the prism model and the 
omnidirectional model, using Harris corner (Harris et al., 
1988) detection to extract feature points. Optical flow 
algorithms are then applied to track these feature points. 
However, tracking with optical flow may be affected by 
dynamic objects, lighting changes, geometric consist-
ency of the projection model, and other factors, leading 
to mismatches. Therefore, to enhance the reliability of 
feature points, the RANSAC algorithm is incorporated to 
eliminate erroneous matches. Several metrics are used to 
assess the model’s effectiveness in utilizing point features, 
as follows.

Optical Flow Success Rate (OFSR) measures the 
accuracy and reliability of feature points tracked using 
optical flow alone. A higher OFSR indicates that a larger 
proportion of the feature points tracked through optical 
flow have been effectively validated. The value of OFSR is 
defined as:

where NF represents the number of feature points suc-
cessfully tracked with the optical flow alone, and Nall 
represents the total number of feature points extracted 
from the previous frame. This metric is used to evaluate 
the impact of the projection model on the performance 
of pure optical flow algorithms. By enhancing geomet-
ric consistency, the projection model helps the optical 
flow algorithm better handle challenges such as dynamic 
objects and lighting variations, thereby improving the 
robustness of feature tracking.

Tracked Feature Ratio (TFR) reflects the overall 
tracking capability of feature points. By discarding mis-
matched feature points, an increase in TFR indicates 
improved tracking accuracy and stability. The value of 
TFR is calculated as follows:

where NFR represents the number of feature points suc-
cessfully tracked with optical flow and RANSAC algo-
rithms, and Nall represents the total number of feature 
points extracted from the previous frame. This metric 
directly evaluates the projection model’s impact on the 

(35)VOFSR = NF

Nall

,

(36)VTFR = NFR

Nall

,

final tracking precision, which is critical for the perfor-
mance of VIO systems. A higher TFR indicates that the 
projection model not only enhances feature point track-
ing but also improves the overall accuracy and stability of 
the system, ultimately benefiting VIO localization preci-
sion in both static and dynamic environments.

Figure  9 and Table  2 present a comparative analysis 
of the feature tracking performance between the trian-
gular prism projection model and the omnidirectional 
projection used in LF-VIO algorithm. In Fig. 9, the fea-
ture tracking results with different projection models 
are clearly illustrated: red points represent features that 
remain trackable after both the optical flow and RANSAC 
algorithms, green points indicate features tracked by the 
optical flow but eliminated by RANSAC, and blue points 
signify the features, whose optical flow tracking failed. 
The results show that the triangular prism projection 
model achieves a higher proportion of red points, dem-
onstrating its improved feature tracking stability. At the 
same time, the reduced number of green and blue points 
indicates that the model better maintains geometric 
consistency in large FoV conditions, thereby minimiz-
ing feature tracking failures caused by geometric distor-
tion. This improvement highlights the advantages of the 
triangular prism projection model in supporting feature 
detection and matching in panoramic VIO systems.

Table  2 presents a comparison of the TFR and OFSR 
metrics for all sequences between the triangular prism 
projection model and the omnidirectional projection 
used in LF-VIO. Bold values indicate the best results in 
each comparison, and this convention applies to all sub-
sequent tables. The results demonstrate that the triangu-
lar prism projection model consistently outperforms the 
omnidirectional projection in all indoor and outdoor test 
sequences. The average TFR for the triangular prism pro-
jection model increased from 0.883 (LF-VIO) to 0.929, 
indicating a significant improvement in feature tracking 
stability due to its enhanced geometric consistency. In 
contrast, OFSR, which measures feature tracking accu-
racy based solely on the optical flow, shows minimal dif-
ferences between the two models (average values of 0.988 
and 0.984, respectively). This is because the optical flow 
algorithm inherently tolerates a certain level of tracking 
error, and the accuracy of tracked features can vary. The 
RANSAC algorithm subsequently eliminates the features 
with lower tracking precision. Therefore, in terms of both 
TFR and OFSR metrics, the triangular prism projection 
model stands out by significantly improving the quality 
and utilization of feature tracking through enhanced geo-
metric consistency.

In the real-world data, Geotri-VIO further demon-
strates its robustness. The 360I sequence (indoor) fea-
tures structured environments and significant lighting 
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variations, while the 360O sequence (outdoor) includes 
unstructured environments and dynamic obstacles such 
as pedestrians and vehicles. In these conditions, Geotri-
VIO achieves TFR values of 0.955 and 0.947, and OFSR 
values of 0.995 and 0.992, significantly outperform-
ing the comparative method LF-VIO (TFR: 0.843 and 
0.828; OFSR: 0.987 and 0.981). These results indicate that 
Geotri-VIO effectively addresses the challenges posed by 
structured and unstructured scenes, dynamic obstacles, 
and varying lighting conditions.

To validate the superiority of the triangular prism 
projection compared to other multi-prism projections, 
the TFR and OFSR metrics of the multi-prism projec-
tion model are analyzed for different numbers of projec-
tion planes, as shown in Table  3. The triangular prism 
projection with three planes achieves the highest scores 
for both metrics. As the number of projection planes 
increases, both TFR and OFSR show a declining trend. 
In the ID01 sequence, the TFR decreases from 0 .854 for 
the three- plane projection to 0.783 for the equidistant 

cylindrical projection, while the OFSR drops from 0.975 
to 0.964. This result is consistent with the theoretical 
findings derived from Eq.  (25), which demonstrates that 
as the number of projection planes increases, geomet-
ric consistency deteriorates, leading to reduced tracking 
stability.

Feature point based VIO evaluation
To evaluate the performance of Geotri-VIO using point 
features, three metrics are used to compare Geotri-
VIO with LF-VIO: Relative Pose Error in translation 
(RPEt), Relative Pose Error in rotation (RPEr), and Abso-
lute Trajectory Error (ATE). RPEt measures the error 
between the estimated translation and the true values 
between consecutive poses, reflecting the accuracy of 
local displacement estimation. RPEr quantifies the rota-
tional error between consecutive poses, assessing the 
system’s accuracy in estimating changes in orientation. 
ATE evaluates global consistency by comparing the esti-
mated trajectory with the true trajectory, serving as a key 

Fig. 9  Feature point extraction and tracking results under different projection models. This figure illustrates feature point extraction and tracking 
results under a anoramic annular image and b triangular prism projection image. Red points represent those that remain trackable after optical 
flow and RANSAC algorithms, green points indicate those that are tracked by the optical flow method but eliminated by RANSAC, and blue points 
denote those where optical flow tracking failed
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performance metric for mapping and long-term naviga-
tion tasks. These metrics assess the accuracy of the VIO 
system from different perspectives and are crucial in 
practical applications. Additionally, the accuracy of the 
VIO system is assessed on the ID01 and OD01 sequences 
for different projection planes.

Table 4 presents the experimental comparison of RPEt, 
RPEr, and ATE between Geotri-VIO and LF-VIO for 
all test sequences, with the corresponding trajectories 
shown in Fig. 10. The trajectories of Geotri-VIO (green) 
are overall closer to the Ground Truth (red) compared to 
LF-VIO (blue), particularly in complex trajectory regions 
such as ID01 and ID04, where Geotri-VIO effectively 
reduces drift errors. In most test sequences, Geotri-VIO 
outperforms LF-VIO in terms of RPEt, RPEr, and ATE. 
On average, Geotri-VIO achieves a 25% reduction in 
RPEt, a 10% reduction in RPEr, and a 39% reduction in 
ATE, demonstrating its significant improvement in global 

trajectory reconstruction accuracy. These enhancements 
are attributed to the introduction of the triangular prism 
projection model, which substantially improves the per-
formance of point feature-based VIO systems.

To further validate the performance of Geotri-VIO in 
more challenging environments, we analyze the results 
of the 360I and 360O sequences. As shown in Table 4, 
Geotri-VIO achieves an RPEt reduction to 6.800, an 
RPEr reduction to 0.295, and an ATE reduction to 
0.317 in the 360I sequence, while in the 360O sequence, 
it achieves an RPEt reduction to 12.001, an RPEr reduc-
tion to 0.420, and an ATE reduction to 1.126, signifi-
cantly outperforming LF-VIO. These results further 
confirm the robustness of Geotri-VIO in handling 
complex scenarios, as previously demonstrated by its 
superior performance in TFR and OFSR metrics. The 
consistent improvements in multiple evaluation met-
rics highlight the effectiveness of the proposed triangu-
lar prism projection model in dynamic and challenging 
environments.

Additionally, to validate that the triangular prism pro-
jection model outperforms other multi-prism projec-
tion models in point based panoramic VIO performance, 
a comparative analysis is conducted using the indoor 
ID01 sequence and outdoor OD01 sequence for differ-
ent projection planes. The results are shown in Table 3, 
with corresponding trajectories presented in Fig. 11. As 
the number of projection planes increases, the global 
geometric consistency of the projection model gradually 
deteriorates, leading to an upward trend in RPEt, RPEr, 
and ATE. These findings confirm that the triangular 
prism projection model achieves superior performance 
by preserving geometric consistency and maintaining 
higher accuracy in trajectory estimation compared to the 
models with more projection planes.

Finally, to validate the advantages of the proposed 
Geotri-VIO framework over traditional VIO algorithms 
designed for pinhole cameras, a comparison is conducted 
with VINS-Mono, a widely-used and classical VIO algo-
rithm. VINS-Mono is selected for comparison due to its 

Table 2  TFR and OFSR Comparison Between the proposed and 
LF-VIO

Items Different results of TFR Different results of 
OFSR

Ours LF-VIO Ours LF-VIO

ID01 0.854 0.766 0.975 0.963

ID02 0.961 0.921 0.994 0.992

ID03 0.968 0.942 0.995 0.993

ID04 0.942 0.913 0.991 0.988

ID05 0.931 0.889 0.987 0.985

ID06 0.920 0.884 0.985 0.983

ID07 0.886 0.848 0.979 0.974

ID08 0.926 0.892 0.987 0.984

ID09 0.924 0.889 0.987 0.983

ID10 0.809 0.771 0.966 0.951

OD01 0.990 0.987 0.998 0.998

OD02 0.989 0.987 0.998 0.996

360I 0.955 0.843 0.995 0.987

360O 0.947 0.828 0.992 0.981

Mean 0.929 0.883 0.988 0.984

Table 3  Comparison of Feature Point Based Performance Metrics for Different Surfaces

Different metrics in IDO1 sequence Different metrics in ODO1 sequence

Surfaces TFR OFSR RPEt RPEr ATE TFR OFSR RPEt RPEr ATE

(%) ((◦/m) (m) (%) ((◦/m) (m)

3 0.854 0.975 1.091 0.994 0.244 0.990 0.998 21.534 0.473 0.205
4 0.852 0.969 1.174 1.022 0.252 0.989 0.998 23.571 0.487 0.228

5 0.851 0.969 1.273 1.112 0.278 0.989 0.998 25.913 0.505 0.272

6 0.835 0.966 1.278 1.149 0.280 0.988 0.998 26.639 0.519 0.308

Infinity 0.783 0.964 1.438 1.238 0.342 0.976 0.998 28.984 0.548 0.341
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use of optical flow tracking in the front-end, which aligns 
with the technical approach of the proposed method. 
The comparison is performed on the PALVIO dataset, 
and the results are summarized in Table 5. As shown in 
the table, Geotri-VIO consistently outperforms VINS-
Mono for all test sequences. For instance, in the ID01 

sequence, Geotri-VIO achieves an RPEt of 1.091, RPEr of 
0.994 degree/m, and ATE of 0.244 m, significantly lower 
than VINS-Mono’s 2.446, 1.431 degree/m, and 0.920 m, 
respectively. Similarly, in the OD01 sequence, Geotri-
VIO achieves an RPEt of 21.534, RPEr of 0.473 degree/m, 
and ATE of 0.205 m, compared to VINS-Mono’s 22.181, 

Fig. 10  A portion of trajectories of different Point based VIO systems. This figure illustrates a portion of trajectories of different point based VIO 
systems on the PALVIO dataset benchmark include sequences: 360I, 360O, ID01, ID04, ID10, OD01

Table 4  Comparison of Performance for RPEt RPEr ATE in Point Feature Based VIO with LF-VIO

Items Different results of RPEt(%) Different results of RPEr((◦/m) Different results of ATE (m)

Ours LF-VIO Ours LF-VIO Ours LF-VIO

ID01 1.091 1.416 0.994 1.139 0.244 0.288

ID02 0.750 0.813 0.394 0.535 0.241 0.409

ID03 0.600 0.626 0.402 0.451 0.195 0.355

ID04 0.694 0.810 0.307 0.332 0.100 0.154

ID05 1.034 0.952 0.324 0.374 0.189 0.274

ID06 0.873 0.910 0.384 0.391 0.063 0.111

ID07 0.926 1.144 0.389 0.398 0.112 0.379

ID08 0.880 1.014 0.629 0.601 0.110 0.186

ID09 0.911 0.873 0.430 0.426 0.158 0.203

ID10 2.075 1.567 0.980 0.972 0.179 0.328

OD01 21.534 29.188 0.473 0.542 0.205 0.344

OD02 14.091 16.386 0.276 0.305 0.122 0.143

360I 6.800 11.242 0.295 0.366 0.317 0.680

360O 12.001 19.214 0.420 0.627 1.126 1.641

Mean 4.590(↓25%) 6.154 0.478(↓10%) 0.533 0.240(↓39%) 0.393
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0.539 degree/m, and 1.309 m. Notably, VINS-Mono fails 
to complete the OD02 sequence due to its limited FoV, 
which leads to insufficient feature tracking in large-scale 
environments. In contrast, Geotri-VIO successfully 
achieves an RPEt of 14.091, RPEr of 0.276 degree/m, 
and ATE of 0.122 m in the same sequence. On aver-
age, Geotri-VIO reduces RPEt by 5%, RPEr by 36%, and 
ATE by 69% compared to VINS-Mono. These results 
demonstrate the superior performance of the proposed 
Geotri-VIO framework in handling complex environ-
ments, leveraging the significant advantages of wide FoV 

cameras and the effectiveness of the triangular prism 
projection model.

Evaluation of feature line extraction and tracking
In point and line-based VIO systems, a higher suc-
cess rate in line tracking indicates that more effective 
line features are utilized for pose estimation, enabling 
more accurate position estimation and ensuring stabil-
ity in varying lighting conditions and dynamic environ-
ments. To evaluate the performance of the proposed 
multi-prism projection model for line features, the 
same images are mapped onto the multi-prism model 

Fig. 11  Point based VIO trajectories with varying numbers of projection planes. This figure illustrates point based VIO trajectories with varying 
numbers of projection planes on sequences: ID01, OD01

Table 5  Comparison of Performance for Point Feature Based VIO with VINS-mono in PALVIO Dataset

Items Different results of RPEt(%) Different results of RPEr((◦)/m) Different results of ATE (m)

Ours VINS Ours VINS Ours VINS

ID01 1.091 2.446 0.994 1.431 0.244 0.920

ID02 0.750 1.542 0.394 0.614 0.241 0.414

ID03 0.600 1.987 0.402 0.725 0.195 0.345

ID04 0.694 1.719 0.307 0.649 0.100 0.247

ID05 1.034 1.957 0.324 0.578 0.189 0.453

ID06 0.873 2.193 0.384 0.645 0.063 0.204

ID07 0.926 2.045 0.389 0.539 0.112 0.386

ID08 0.880 1.905 0.629 0.752 0.110 0.213

ID09 0.911 2.133 0.430 0.557 0.158 0.391

ID10 2.075 3.774 0.980 1.567 0.179 0.539

OD01 21.534 22.181 0.473 0.539 0.205 1.309

OD02 14.091 failed 0.276 failed 0.122 failed

Mean 3.705 (↓5%) 3.898 0.499 (↓36%) 0.781 0.160 (↓69%) 0.529
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and the omnidirectional model. The ELSED algorithm 
is used to extract line features, followed by the appli-
cation of LBD descriptors for feature description and 
matching. The following metric is utilized to assess the 
model’s effectiveness in leveraging line features:

Tracked Line Ratio(TLR) reflects the tracking capabil-
ity of line segments with the current projection model. An 
increase in TLR indicates improved tracking accuracy of 
line features. The value of TLR is calculated as:

where NLT represents the number of line segments suc-
cessfully tracked across frames, and NLT denotes the total 
number of line segments extracted in the previous frame. 
A higher TLR allows the VIO system to effectively utilize 
more line features, thereby enhancing positioning accu-
racy and improving stability in complex environments.

Table  6 and Fig.  12 present a comparative analysis of 
the line feature tracking performance between the tri-
angular prism projection model and the omnidirectional 
projection used in LF-PGVIO. In Fig.  12, the results of 

(37)VTLR = NLT

NLA

Fig. 12  Feature line extraction and tracking results under different projection models. Red lines represent those that remain trackable, green lines 
indicate those tracking failed

Table 6  Comparison of Performance for TLR

Items Ours results of TLR LF-PGVIO 
results of 
TLR

ID01 0.503 0.412

ID02 0.645 0.616

ID03 0.661 0.646

ID04 0.608 0.583

ID05 0.596 0.558

ID06 0.575 0.531

ID07 0.539 0.522

ID08 0.600 0.576

ID09 0.614 0.581

ID10 0.483 0.452

OD01 0.565 0.528

OD02 0.592 0.542

360I 0.457 0.403

360O 0.439 0.358

Mean 0.563 0.522
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line feature extraction and tracking with different pro-
jection models are clearly illustrated: red lines represent 
successfully tracked features, while green lines indicate 
the features that failed in tracking. The results show that 
the triangular prism projection model achieves a higher 
proportion of successfully tracked red lines, demon-
strating its superior line feature tracking stability. Mean-
while, the reduced number of green lines indicates that 
the model maintains better geometric consistency under 
large FoV, minimizing tracking failures caused by dis-
tortions. These improvements underscore the triangu-
lar prism projection model’s effectiveness in line feature 
detection and tracking.

Table 6 compares the TLR metrics between the trian-
gular prism projection model and the omnidirectional 
projection used in LF-PGVIO for all test sequences. The 
results demonstrate that the triangular prism projection 
model consistently achieves higher TLR values, reflect-
ing its superior ability to maintain and track line fea-
tures effectively. For example, in the challenging indoor 
sequence ID01, the triangular prism projection model 
achieves a TLR of 0.503, significantly higher than LF-
PGVIO’s 0.412. Similarly, in ID03 and ID09, the TLR 
values of 0.661 and 0.614 surpass LF-PGVIO’s 0.646 and 
0.581, respectively. These improvements highlight the 
triangular prism projection model’s effectiveness in pre-
serving geometric consistency and minimizing track-
ing failures in complex environments. The superiority of 
the triangular prism projection model is also evident in 
outdoor sequences. In OD01, it achieves a TLR of 0.565, 
compared to LF-PGVIO’s 0.528, while in OD02 it reaches 
0.592, outperforming LF-PGVIO’s 0.542.

Furthermore, in the real-world data, which were col-
lected in highly dynamic environments and significant 
lighting variations, the triangular prism projection model 
continues to demonstrate its robustness. In the 360I 
sequence, it achieves a TLR of 0.457, compared to LF-
PGVIO’s 0.403, while in the 360O sequence, it attains 
a TLR of 0.439, significantly higher than LF-PGVIO’s 
0.358. These results further validate the robustness of 

the proposed model in diverse and challenging environ-
ments. The consistent improvements for all sequences 
underscore the advantages of the triangular prism pro-
jection model in handling complex scenarios.

Overall, the average TLR for all sequences with the tri-
angular prism projection model is 0.563, representing an 
improvement over LF-PGVIO’s 0.522. While LF-PGVIO 
employs the OCSD method for extracting line features, 
its RLBD descriptor remains fundamentally reliant on the 
LBD descriptor, which requires strict geometric consist-
ency. By preserving geometric consistency and reduc-
ing distortions, the triangular prism projection model 
ensures more reliable and accurate line feature tracking.

To validate that the triangular prism projection model 
outperforms other multi-prism projection models in line 
feature tracking, the TLR metric is analyzed for differ-
ent numbers of projection planes, as shown in Table  7. 
The results indicate that the triangular prism projection 
model with three planes achieves the highest TLR in both 
indoor (ID01) and outdoor (OD01) sequences, with TLR 
values of 0 .503 and 0.565, respectively. As the number of 
projection planes increases, the TLR steadily decreases. 
For instance, in the ID01 sequence, the TLR drops from 
0 .503 for the three-plane configuration to 0.462 for the 
six-plane configuration. Similarly, in the OD01 sequence, 
the TLR declines from 0.565 to 0.529 over the same 
range. When the number of projection planes increases 
to the equidistant cylindrical projection (infinity planes), 
the line feature extraction and tracking algorithm fails 
entirely, underscoring the importance of maintaining 
geometric consistency for effective line feature tracking.

Feature point and line based VIO evaluation
Using the metrics RPEt, RPEr, and ATE, the performance 
of the point and line-based Geotri-VIO system is evalu-
ated, as summarized in Table 8, with corresponding tra-
jectories shown in Fig. 13. The experimental results reveal 
that Geotri-VIO consistently outperforms LF-PGVIO 
for all test sequences. On average, Geotri-VIO reduces 
RPEt by 27%, RPEr by 11%, and ATE by 41% compared to 

Table 7  Performance Comparison of Feature Point and Line-Based Metrics Across Different Projection Models

Different metrics in IDO1 sequence Different metrics in ODO1 sequence

Surfaces TLR RPEt RPEr ATE TLR RPEt RPEr ATE

(%) ((◦)/m) (m) (%) ((◦)/m) (m)

3 0.503 0.958 0.923 0.219 0.565 20.067 0.466 0.183
4 0.496 1.003 0.989 0.231 0.551 22.968 0.497 0.216

5 0.477 1.093 1.100 0.258 0.532 24.042 0.511 0.233

6 0.462 1.201 1.109 0.260 0.529 25.335 0.519 0.260

Infinity failed failed failed failed failed failed failed failed
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LF-PGVIO, demonstrating significant improvements in 
trajectory estimation accuracy.

For instance, in the challenging ID01 sequence, 
Geotri-VIO achieves an RPEt of 0.958, RPEr of 0.923 
degree/m, and ATE of 0.219 m, all of which are superior 
to LF- PGVIO’s corresponding values of 1.371, 1.080 
degree/m, and 0.278 m. Similarly, in the OD01 sequence, 

Geotri-VIO achieves an RPEt of 20.067, RPEr of 0.466 
degree/m, and ATE of 0.183 m, significantly outperform-
ing LF-PGVIO. These results highlight the robustness of 
the Geotri-VIO system in both indoor and outdoor sce-
narios, effectively reducing trajectory drift and improving 
accuracy.

Table 8  Comparison of RPEt, RPEr, and ATE for the Proposed Framework and LF-PGVIO

Items Different results of RPEt(%) Different results of RPEr((◦/m) Different results of ATE (m)

Ours LF-PGVIO Ours LF-PGVIO Ours LF-PGVIO

ID01 0.958 1.371 0.923 1.080 0.219 0.278

ID02 0.738 0.796 0.374 0.500 0.183 0.306

ID03 0.582 0.609 0.363 0.423 0.091 0.192

ID04 0.692 0.676 0.273 0.268 0.128 0.149

ID05 0.955 0.920 0.302 0.342 0.197 0.444

ID06 0.814 0.903 0.343 0.359 0.051 0.105

ID07 0.918 1.244 0.371 0.385 0.093 0.226

ID08 0.716 1.102 0.627 0.616 0.088 0.184

ID09 0.887 0.819 0.426 0.410 0.144 0.186

ID10 1.985 1.966 0.920 0.941 0.150 0.299

OD01 20.067 28.382 0.466 0.563 0.183 0.335

OD02 11.928 15.694 0.251 0.286 0.096 0.124

360I 5.110 9.934 0.273 0.360 0.263 0.606

360O 11.367 14.071 0.385 0.554 1.064 1.568

Mean 4.113(↓27%) 5.606 0.450(↓11%) 0.506 0.211(↓41%) 0.357

Fig. 13  A portion of trajectories of different point and line based VIO systems. This figure illustrates a portion of trajectories of different point 
and line based VIO systems on the PALVIO dataset benchmark and our dataset include sequences: 360I, 360O, ID05, ID07, ID09, OD02
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To further validate the performance of Geotri-VIO 
in highly dynamic and complex environments, the 360I 
and 360O sequences are analyzed. In the 360I sequence, 
Geotri-VIO achieves an RPEt of 5.110, RPEr of 0.273 
degree/m, and ATE of 0.263 m, compared to LF-PGVIO’s 
9.934, 0.360 degree/m, and 0.606 m, respectively. Simi-
larly, in the 360O sequence, Geotri-VIO attains an RPEt 
of 11.367, RPEr of 0.385 degree/m, and ATE of 1.064 m, 
significantly outperforming LF-PGVIO’s 14.071, 0.554 
degree/m, and 1.568 m. These results demonstrate the 
robustness of Geotri-VIO in handling dynamic obstacles 
and varying lighting conditions. The consistent improve-
ments in all metrics underscore the effectiveness of the 
proposed framework in real world applications.

Additionally, the performance of the VIO system for 
different numbers of projection planes is evaluated using 
the ID01 and OD01 sequences. The experimental results 
are presented in Table 7, with corresponding trajectories 
shown in Fig. 14. The results indicate that the triangular 
prism projection model with three planes achieves the 
best overall performance, with the lowest RPEt, RPEr, 
and ATE values in both sequences. For example, in the 
ID01 sequence, the RPEt increases from 0 .958% (three 
planes) to 1.201% (six planes), while the ATE increases 
from 0.219 m to 0.260 m. A similar trend is observed 
in the OD01 sequence, where the RPEt and ATE also 
degrade as the number of projection planes increases. 
When the projection model reaches the equidistant 

Fig. 14  Point and line based VIO trajectories with varying numbers of projection planes. This figure illustrates point and line based VIO trajectories 
with varying numbers of projection planes on sequences: ID01, OD01

Table 9  Comparison of RPEt, RPEr, and ATE for the Proposed Framework and PL-VINS

Items Different results of RPEt(%) Different results of RPEr((◦/m) Different results of ATE (m)

Ours PL-VINS Ours PL-VINS Ours PL-VINS

ID01 0.958 2.102 0.923 1.960 0.219 0.532

ID02 0.738 1.292 0.374 0.903 0.183 0.454

ID03 0.582 1.157 0.363 0.826 0.091 0.300

ID04 0.692 0.972 0.273 0.439 0.128 0.297

ID05 0.955 1.199 0.302 0.421 0.197 0.518

ID06 0.814 1.226 0.343 0.459 0.051 0.195

ID07 0.918 1.138 0.371 0.417 0.093 0.256

ID08 0.716 1.229 0.627 0.809 0.088 0.236

ID09 0.887 1.051 0.426 0.502 0.144 0.240

ID10 1.985 2.293 0.920 1.341 0.150 0.408

OD01 20.067 22.221 0.466 0.590 0.183 0.944

OD02 11.928 31.150 0.251 0.697 0.096 2.524

Mean 3.353(↓38%) 5.503 0.470(↓39%) 0.780 0.135(↓76%) 0.575
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cylindrical projection (infinity planes), the system fails 
entirely, underscoring the importance of geometric con-
sistency in ensuring the accuracy and stability of VIO 
systems.

Finally, to further validate the performance of the pro-
posed Geotri-VIO framework in point and line feature 
based VIO, a comparison is conducted with PL-VINS, a 
state-of-the-art VIO algorithm designed for pinhole cam-
eras that shares a similar technical approach in front-end 
feature tracking (optical flow for point features and line 
feature extraction and matching). The comparison is per-
formed on the PALVIO dataset, and the results are sum-
marized in Table  9. As shown in the table, Geotri-VIO 
consistently outperforms PL-VINS for all test sequences. 
For instance, in the ID01 sequence, Geotri-VIO achieves 
an RPEt of 0.958, RPEr of 0.923 degree/m, and ATE of 
0.219 m, significantly lower than PL-VINS’s 2.102, 1.960 
degree/m, and 0.532 m, respectively. Similarly, in the 
OD01 sequence, Geotri-VIO achieves an RPEt of 20.067, 
RPEr of 0.466 degree/m, and ATE of 0.183 m, compared 
to PL-VINS’s 22.221, 0.590 degree/m, and 0.944 m. 
Notably, in the OD02 sequence, PL-VINS exhibits sig-
nificantly larger errors, with an RPEt of 31.150, RPEr of 
0.697 degree/m, and ATE of 2.524 m, while Geotri-VIO 
achieves an RPEt of 11.928, RPEr of 0.251 degree/m, 
and ATE of 0.096 m. On average, Geotri-VIO reduces 
RPEt by 38%, RPEr by 39%, and ATE by 76% compared 
to PL-VINS. These results demonstrate the superior 
performance of the proposed Geotri-VIO framework in 
handling complex environments, leveraging the advan-
tages of wide FoV cameras and the effectiveness of the 
triangular prism projection model for both point and line 
features.

These findings validate the effectiveness of the trian-
gular prism projection model in preserving geometric 
consistency and enhancing feature tracking performance. 
By integrating both point and line features, Geotri-VIO 
achieves superior trajectory estimation accuracy com-
pared to benchmarks, particularly in large FoV scenarios 
and complex environments.

Ablation Study on Geotri‑VIO
To evaluate the impact of different projection models 
and feature types on the performance of Geotri-VIO, we 
conducted an ablation study. The results are presented in 
Table 10, which compares the Mean Relative Pose Error 
in translation (MRPEt), rotation (MRPEr), and Mean 
Absolute Trajectory Error (MATE) for four configura-
tions: Tri-PL, Tri-P, Omni-PL, and Omni-P. Here, Tri 
refers to the triangular prism projection model proposed 
in this paper, while Omni denotes the omnidirectional 
projection model adopted by state-of-the-art meth-
ods (Z. Wang et al., 2022; Z. Wang, Yang, Shi, Li, et al., 
2024; Z. Wang, Yang, Shi, Zhang, et al., 2024). PL and P 
represent the use of point-line features and point-only 
features, respectively. These metrics were computed by 
averaging the results over the PALVIO Dataset (ID01-
ID10 and OD01-OD02) as well as the Custom Dataset 
(360I and 360O), ensuring a comprehensive evaluation in 
diverse scenarios.

In addition to accuracy metrics, we also examined 
computational efficiency by evaluating CPU utilization 
and memory consumption for each configuration. To 
ensure a fair comparison, all methods were executed at a 
fixed processing frequency of 10 Hz, which is one of the 
most commonly used frame rates in VIO applications. 
This setup allows us to assess the computational over-
head associated with different projection models and fea-
ture types in realistic conditions. The results reveal that 
while the triangular prism projection model consistently 
achieves higher accuracy, it also demonstrates a balanced 
trade-off between accuracy and computational cost, 
particularly in terms of memory efficiency. These find-
ings provide valuable insights into the practical impli-
cations of projection model selection in real world VIO 
deployments.

Impact of Projection Models: The triangular prism 
projection model (Tri) consistently outperforms the 
omnidirectional projection model (Omni) for all feature 
types. For instance, in the point-line feature setting, Tri-
PL reduces MRPEt by 27% (4.113 vs. 5.606), MRPEr by 
11% (0.450 vs. 0.506), and MATE by 41% (0.211 vs. 0.357) 
compared to Omni-PL. In the point-only feature set-
ting, Tri-P achieves reductions of 25% in MRPEt (4.590 

Table 10  Performance Metrics of Different Projection Models and Feature Types

Settings MRPEt MRPEr MATE CPU MEM Freq
(%) ((◦)/m) (m) (%) (GB) (Hz)

Tri-PL 4.113 0.450 0.211 38.254 0.064 10

Tri-P 4.590 0.478 0.240 25.318 0.048 10

Omni-PL 5.606 0.506 0.357 44.577 0.304 10

Omni-P 6.154 0.533 0.393 25.125 0.048 10
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vs. 6.154), 10% in MRPEr (0.478 vs. 0.533), and 39% in 
MATE (0.240 vs. 0.393) relative to Omni-P. These results 
demonstrate that the triangular prism projection model 
is better suited for handling feature data in VIO systems, 
aligning closely with the theoretical analysis derived from 
the mathematical proofs in Section Methodology.

In addition to the accuracy, the triangular prism pro-
jection model also exhibits advantages in computational 
efficiency. Compared to Omni-PL, Tri-PL reduces mem-
ory usage by 79% (0.064 GB vs. 0.304 GB) while achieving 
a lower CPU load (38.254% vs. 44.577%). This improve-
ment stems from the local geometric consistency of the 
triangular prism projection, which enables a more com-
pact representation and efficient tracking of line features. 
In contrast, the omnidirectional projection model lacks 
geometric consistency, often requiring more complex 
methods for describing and tracking line features, lead-
ing to higher memory consumption and CPU load. A 
similar trend is observed in the point-only setting: Tri-P 
and Omni-P exhibit nearly identical memory consump-
tion (0.048 GB), while Tri-P needs a slightly higher CPU 
load (25.318% vs. 25.125%). This minor difference arises 
because, apart from the front-end projection model, both 
configurations share identical VIO settings. Moreover, 
since the triangular prism projection is derived from the 
omnidirectional image through a simple transformation, 
the additional computational cost is negligible, explain-
ing the nearly identical resource usage.

These results highlight that the triangular prism projec-
tion model not only enhances state estimation accuracy 
but also achieves a more favorable balance between com-
putational cost and performance, making it a compelling 
choice for VIO systems.

Impact of Feature Types: The use of point-line fea-
tures (PL) consistently improves performance compared 
to point-only features (P) with both projection models. 
For example, in the triangular prism projection setting, 
Tri-PL reduces MRPEt by 10% (4.113 vs. 4.590), MRPEr 
by 5% (0.450 vs. 0.478), and MATE by 12% (0.211 vs. 
0.240) compared to Tri-P. Similarly, in the omnidirec-
tional projection setting, Omni-PL achieves reductions 
of 9% in MRPEt (5.606 vs. 6.154), 5% in MRPEr (0.506 
vs. 0.533), and 9% in MATE (0.357 vs. 0.393) relative to 
Omni-P.

This indicates that incorporating line features enhances 
the system’s ability to estimate both translation and rota-
tion, which is consistent with the conclusions of Wang 
et al. (2024). However, this accuracy improvement comes 
at the cost of increased resource consumption. Com-
pared to point-only features, incorporating point-line 
features needs higher CPU load with both projection 
models: Tri-PL incurs a 51% increase over Tri-P (38.254% 
vs. 25.318%), while Omni-PL sees a 77% increase over 

Omni-P (44.577% vs. 25.125%). Memory usage also rises, 
with Tri-PL consuming 33% more than Tri-P (0.064 GB 
vs. 0.048 GB) and Omni-PL using 533% more than Omni-
P (0.304 GB vs. 0.048 GB).

These results demonstrate that while line features sig-
nificantly enhance accuracy, they introduce a notable 
computational overhead, particularly in the omnidirec-
tional setting. The triangular prism projection model, 
however, mitigates this cost by enabling more efficient 
line feature description and tracking algorithms, achiev-
ing a better trade-off between accuracy and computa-
tional efficiency.

Feature Utilization Across Projection Models: In the 
Impact of Feature Types section, it is observed that the 
reductions in MRPEt, MRPEr, and MATE achieved by 
Tri-PL over Tri-P (10%, 5%, 12%) exceed those achieved 
by Omni-PL over Omni-P (9%, 5%, 9%). This suggests 
that the triangular prism projection model benefits more 
from incorporating line features compared to the omni-
directional projection model, likely due to its compat-
ibility with more effective line feature description and 
tracking methods. This further supports its suitability for 
handling feature data in VIO systems.

Discussion: The ablation study demonstrates that both 
the choice of projec- tion model and the inclusion of line 
features significantly impact VIO performance in terms 
of accuracy and computational efficiency. The triangular 
prism projection model not only improves state estima-
tion accuracy but also achieves a better balance between 
memory usage and CPU load, making it a computation-
ally efficient alter- native to the omnidirectional projec-
tion model. Additionally, the use of point-line features 
consistently enhances localization accuracy using both 
projection models, with the triangular prism projection 
benefiting more from the inclusion of line fea- tures. This 
suggests that its structured representation is more com-
patible with efficient line feature tracking. Overall, the 
results highlight the advantage of adopting a projec- tion 
model that not only preserves geometric consistency but 
also facilitates effective feature utilization, leading to a 
more robust and efficient VIO system.

Conclusion
This paper introduces Geotri-VIO, a panoramic VIO 
framework that leverages a multi-prism projection 
model to enhance geometric consistency in panoramic 
images, significantly improving visual information uti-
lization, feature matching accuracy, and overall VIO 
system performance. Theoretical analysis confirms that 
the proposed framework ensures geometric consist-
ency and achieves optimal performance with a triangu-
lar prism projection. By adapting to both point features 
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and combined point-line features, the framework 
demonstrates strong compatibility with various front-
end visual features. Experimental results validate that 
Geotri-VIO consistently outperforms benchmarks in 
multiple evaluation metrics, achieving optimal geomet-
ric consistency with the triangular prism projection, in 
alignment with theoretical predictions. However, the 
proposed framework still has certain limitations. First, 
like most VIO systems, it suffers from accumulated 
errors over long trajectories, which is a fundamen-
tal challenge in odometry-based systems. Second, the 
reliance on traditional feature extraction and tracking 
methods makes the system vulnerable to motion blur 
in high-speed scenarios. In future, we plan to address 
these limitations by extending the framework to a full 
SLAM system with loop closure detection and explor-
ing learning-based methods for feature extraction and 
tracking. These improvements will enhance the perfor-
mance and applicability of the proposed framework in 
real world scenarios.
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